國立台灣大學海洋研究所碩士論文

指導教授:劉康克 博士 黃天福 博士

紅柴溝與南海時序測站上層磷酸鹽 之研究

Phosphate variations in the upper water column at Hung-Tsai Trough and South East Asia Times-series Station(SEATS) in the South China Sea

研究生:蘇濬宇 撰

中華民國九十三年一月

致 謝

感謝恩師 劉康克教授的悉心指導,無論是生活態度或學術研究 上,都讓我拓展了視野並累積了許多的知識,並對於科學研究有更深 的體認,以及在百忙之中對論文的斧正。感謝黃天福教授與溫良碩教 授對我在論文及實驗上的指導,還有不斷的鞭策與鼓勵。

謝謝口試委員白書禎教授、溫良碩教授、龔國慶教授對論文的指 正,使本研究更加的完整,也謝謝各位老師平日課堂上的教導,使我 在研究生涯中,獲得寶貴的之事與諸多的關懷,在此謹致由衷的謝意

這些日子,要感謝的人實在太多了!感謝貴儀中心的李文慧、海 科中心的蘇宗德、吳立茵、王漢松、孫嘉琦、李秀萍,在採樣及實驗 過程中的協助。謝謝蔚人、佳穎、智為、一之、裕程、逸婷、琇凡、 宇涵、英傑、凱勳、竣皓、漢杰、子勞在日常生活上的互相幫助及鼓 勵。

最後,感謝父母及晨萍在這段期間所給我的支持與鼓勵,讓我能 安心的完成學業。

摘 要

一般相信, 在副熱帶貧營養鹽的大洋區, 磷循環對大洋上層水的 浮游生物是十分重要的。溶解態磷酸鹽通常在亞熱帶大洋表層水體中 的濃度相當低, 成為生物生長限制因子, 進而控制著基礎生產力。所 以瞭解低濃度磷酸鹽的變化對解釋大洋上層水之營養鹽動力學來 說, 其有相當的重要性。本研究之目的在利用"鎂引發的共沈澱法" (MAGIC)探討近岸(紅柴溝)及深海(SEATS 測站)之上層水體中低濃度 磷酸鹽在時間和空間上的變化, 以瞭解副熱帶之貧營養鹽海域表層之 營養鹽動力學。

本研究利用 MAGIC 法,濃縮上層海水中的磷酸鹽以精確測定其濃度。本研究歷次的測定中所得到的背景吸光值在 0.007-0.009 之間,換算濃度為 5-7nM。檢量線之斜率平均為(1.17 乎).03)*10⁻³/nM,其 值頗為穩定。其換算的莫爾吸光係數約為 22700/M/cm,偵測極限約 為 2nM。

2003 年 3 月,在近岸(紅柴溝)兩個潮汐週期的時間序列研究 中,磷酸鹽濃度在表層皆呈現低值,磷酸鹽濃度於溫躍層開始明顯增 加,在底水達到最高,其濃度隨潮汐而變化,在退潮時,低溫富磷酸 鹽之海水湧入紅柴溝之底層,最大濃度從 0.8 µ M 到 1.5 µ M, 100m 以 淺的海水,利用 MAGIC 方法分析,結果顯示磷酸鹽濃度有明顯之變

I

化,其變化幅度 10 50nM。雖然,紅柴溝內磷酸鹽隨時間之變化很 大,但其與密度或溫度之關係有一致性,表示磷酸鹽濃度的變化主要 是受到水體運動的控制。兩次低平潮時之採樣顯示,在下午 2:00 之 表水中(5-20m)磷酸鹽濃度(22-33nM)要明顯低於午夜 1:30 之濃度 (39-63nM)。表層磷酸鹽被吸收所造成的欠缺(deficit, PO₄),也 在下午 2 點時達到最高,而葉綠素也達到最高值。由此推論,紅柴溝 之潮汐作用會將營養鹽向上層補充,經由垂直混合作用,使營養鹽進 入有光層,進而強化浮游植物之生長。

在深海(SEATS)的時間序列研究中,三個航次之高頻變化都不一 致,2002年七月的航次,表層溫度的變化幅度(*2*)較其他兩航次 為大,變化延續的深度(至 2000m)也較其他兩航次為深,鹽度與密度 的變化也有類似的現象。經由密度面深度平均法求得之溫度及鹽度代 表性剖面顯示三月之上層水體(1200m 以淺)之水溫最低;七月與九月 之水溫近乎一致,但九月表層水溫度較七月略高,不過九月表層鹽度 低於七月。

磷酸鹽濃度代表性剖面則顯示在 1200m 以深, 三個航次所得到的 深層水之磷酸鹽濃度相當一致。在 1200m 以淺, 三月(OR1-639)的磷 酸鹽濃度較七月(OR3-794)、九月(OR1-656)為高, 因垂直擴散較強所 造成, 但也可能與呂宋西北的湧升有關。最表層之磷酸鹽濃度也以三

Π

月最高,達到34nM,到了七月磷酸鹽濃度減到最低,濃度低到6nM, 推測因夏季之層化作用較強,而顯出生物利用之後果。

	目	録		
摘要				
目錄				
表目錄				
圖目錄				
第一章 緒論				
1.1 概述				1
1.2 分析方法的原理與沿革				4
1.3 研究目的				6
第二章 低濃度磷酸鹽之測定	2			
2.1 採樣方法				8
2.2 實驗器材				9
2.3 測定的方法				10
2.3.1 試劑的配製				10
2.3.2 磷酸鹽標準溶液				12
2.3.3 分析步驟				13
2.3.4 檢量線及背景值				13
2.4 結果計算及討論				15
2.5 小結				17

IV

第三章 紅柴溝磷酸鹽之測定

3.1 紅柴溝簡介	19
3.2 探測與分析	19
3.2.1 水文探測及採樣	19
3.2.2 磷酸鹽的分析	20
3.3 結果	22
3.4 討論	25
3.5 小結	27
第四章 南海時序測站磷酸鹽變化之探討	
4.1 南海簡介	29
4.2 南海時序測站	30
4.3 材料與方法	31
4.3.1 採樣與探測方法	31
4.3.2 化學水文平均狀態之求取	33
4.4 結果	36
4.4.1 CTD 資料	36
4.4.2 溫鹽密度之高頻變化與平均剖面	39
4.4.3 航次間之水文變化	40
4.4.4 磷酸鹽濃度剖面	41

4.5 討論	42
4.6 小結	45
第五章 結論	47
參考文獻	51
表	58
	64
附錄一:定容吸管與定容瓶的校正	103
附錄二:各次檢量線數據	107
附錄三:葉綠素的測定	111
附錄四:磷酸鹽測定之試劑配製	114
附錄五: $\sigma_{\! heta}$ 迴歸範圍內,對應參數之求取	116
附錄六:各測站表層磷酸鹽濃度表	118
附錄七:南海其他測站	121

表目錄

表 2-1.2002.11.06 零添加及標準添加三重覆之吸光值	58
表 2-2.檢量線之斜率、背景吸光值及對應濃度、零添加修正吸光	ć值
及對應濃度	59
表 3-1.2003.04.18 零添加及標準添加三重覆之吸光值	60
表 3-2.0R1-676 化學水文探測工作表	60
表 4-1.SEATS 測站樣水深度及梯次安排(供採水人員參考)	61
表 4-2.0R1-639 化學水文探測工作表	62
表 4-3.0R3-794 化學水文探測工作表	63
表 4-4.0R1-656 化學水文探測工作表	63

圖目錄

圖 1-1.磷酸鹽、硝酸鹽和矽酸鹽在大西洋、太平洋、印度洋	中濃度
的垂直分佈圖	64
圖 1-2.台灣附近海域之磷酸鹽垂直分佈圖(Pai and Chen 199	94):A.
東海 B.南海 C.西菲律賓海	65
圖 1-3.海洋中磷酸鹽的循環示意圖	66
圖 2-1.低濃度磷酸鹽測定流程圖	67
圖 2-2.2002.11.06 以海水為基質之不同磷酸鹽添加濃度檢量約	泉 68
圖 3-1.紅柴溝採樣測站位置圖	69
圖 3-2.以海水為基質之不同磷酸鹽添加濃度檢量線	70
圖 3-3.3月 18日 15:00 至 3月 19日 18:00 紅柴溝變化圖(a.	潮汐
b.密度 c.鹽度 d.溫度)	71
圖 3-4.紅柴溝(a)溫度對深度剖面圖 (b)鹽度對深度剖面圖 (d	c)磷酸
鹽對深度剖面圖 72	2
圖 3-5.紅柴溝(a)磷酸鹽對深度剖面圖(b)葉綠素對深度剖面圖	圖 73
圖 3-6.3月 18日 15:00 至 3月 19日 18:00 紅柴溝變化圖(a.	潮汐
b.溫度 c.螢光值	74
圖 3-7. OR1-676 航次對表層(0-60m)磷酸鹽濃度垂直分佈圖	75
圖 3-8. OR1-676 航次溫鹽圖	76

VIII

圖 3-9.紅柴溝 a.磷酸鹽濃度對密度關係圖 b.磷酸鹽濃度對溫度	影
係圖	77
圖 3-10.a.溫鹽圖 b.磷酸鹽濃度對溫度關係圖	78
圖 3-11. 紅柴溝 a. PO₄與時間關係圖 b.葉綠素與時間關係圖	79
圖 3-12. PO4 對葉綠素關係圖	80
圖 4-1. 南海海域地形圖	81
圖 4-2. σθ對應時間序列的深度變化之積分示意圖	82
圖 4-3.0R1-639(2002.3) (a) 溫度(T) 對深度剖面圖 (b) 溫度(T-	T _{avg})
對深度剖面圖	83
圖 4-4.0R1-639(2002.3) (a)鹽度(S)對深度剖面圖 (b)鹽度(S-	Savg)
對深度剖面圖	84
圖 4-5.0R1-639(2002.3) (a)σθ對深度剖面圖 (b) σθ-σθανα 對深加	度剖
面圖	85
圖 4-6.0R3-794(2002.7) (a) 溫度(T) 對深度剖面圖 (b) 溫度(T-	T _{avg})
對深度剖面圖	86
圖 4-7.0R3-794(2002.7) (a)鹽度(S)對深度剖面圖 (b)鹽度(S-	Savg)
對深度剖面圖	87
圖 4-8.0R3-794(2002.7) (a)σ _θ 對深度剖面圖 (b) σ _θ -σ _{θavg} 對深加	度剖
面圖	88

IX

圖 4-9.0R1-656(2002.9) (a) 溫度(T) 對深度剖面圖 (b) 溫度(T-	- T _{avg})
對深度剖面圖	89
圖 4-10.0R1-656(2002.9) (a)鹽度(S)對深度剖面圖 (b)鹽度(S	S-Savg)
對深度剖面圖	90
圖 4-11.0R1-656(2002.9) (a)σθ對深度剖面圖 (b) σθ-σθανα 對淡	罙度
剖面圖	91
圖 4-12.0R3-794 航次 $\sigma_{ heta}$ =22.1 kg/m ³ 時深度的時序變化	92
圖 4-13. (a)代表性溫度的垂直剖面 (b)代表性鹽度的垂直剖面	(c)
代表性密度的垂直剖面	93
圖 4-14. 原始磷酸鹽垂直剖面圖(a)OR1-639 (b)OR3-794	
(c)0R1-656	94
圖 4-15.磷酸鹽對σ₀關係圖(a)OR1-639(b)OR3-794(c)OR1-656	95
圖 4-16.代表性磷酸鹽垂直剖面圖 (a)OR1-639 (b)OR3-794	
(c)0R1-656	96
圖 4-17. OR3-794 0-200m (a)磷酸鹽垂直剖面圖 (b)代表性磷酮	发鹽
垂直面圖	97
圖 4-18.(a) OR1-639 航次上層 300m 之σθ對時間 contour	98
圖 4-18.(b) a.OR1-639 航次 b.OR3-794 航次 c.OR3-794 航次沿	腹
(T-T _{avg})對σ _θ 剖面圖	99

Х

圖 4-19. 代表性磷酸鹽的垂直剖面圖 (a) 0-4000m (b) 0-1200m

(C)) 0 - 150 m	100
-----	--------------------	-----

圖 4-20.(a) 三航次之溫鹽圖(b) 溫度與磷酸鹽濃度關係圖 101 圖 4-21.(a) 對數尺度之磷酸鹽分佈圖 (b) ₩u.et al.(2003) 對數尺

度之磷酸鹽分佈圖 102

第一章 緒論

1.1 概述

在上層海水中,營養的成分是和光合作用產生的有機物產物有 關。在化學海洋學中,這些營養的成分是指磷(phosphorus),無機 的氮複合物(inorganic nitrogen compounds)和矽(silicon),還包 括一些海水的主要組成物質和必要的微量金屬(trace metals),一般 稱為營養鹽。營養鹽在海洋中的分佈,很早就有研究(如:Redfield et al.,1963)。一般在表層,磷酸鹽(phosphate),硝酸鹽(nitrate) 和矽酸鹽(silicate)的濃度較低,並隨深度而變高,營養鹽在表層 濃度低是因為光合作用時植物攝取所致。100-1000公尺處,營養鹽 濃度大多會快速上升,顯示有強烈的再生作用。在 1000公尺以下, 濃度隨深度變化較少。圖 1-1 為磷酸鹽、硝酸鹽和矽酸鹽在三大洋中 代表性的垂直分佈圖。

海洋中磷酸鹽的含量隨著海域和季節的不同而有所變化,一般在 河口及封閉海域,沿岸水及湧升流區含磷量較高;在開放性大洋表層 含量較低。近海海域一般在冬季磷酸鹽含量較高,夏季含量較低。在 深海及大洋中,磷酸鹽的分佈有明顯的分層,一般可分為幾種不同的 層次:表水分佈較低且均勻;次表層其含量隨深度而迅速增加;深層 海水含量一般為最高。但隨不同的海域仍有些許的差異,以台灣附近

的海域為例(Gong et.al.,1992):西菲律賓海表層海水濃度幾乎為 零,200m以下逐漸增加,到1000m以下濃度均保持在2.8μ%。南海 的表層海水濃度也幾乎為零,但在75m以下即開始增加,到1000m濃 度約為2.7μM,往下濃度不再隨深度增加而改變。而台灣東方的西 菲律賓海表水也幾乎為零,200m以下逐漸增加,到1000m時濃度達 到一極大值(約3.0μM),往下濃度漸減,至3000m時濃度約2.7μM, 如圖1-2 (Gong et al.,1992; Pai et al.,1994)。

磷酸鹽在海洋中的循環和再生分為生物作用和物理作用兩大機 制。在生物作用機制中主要分為:1.無機磷的移除-被浮游植物吸收 2.食物鏈中的移動-溶解性有機磷在食物鏈中循環 3.無機磷的再生-細菌分解;在物理作用機制中則分為1.水團的循環和2.顆粒的沈 降;圖1-3為海洋中磷酸鹽的循環示意圖。

在海水中,將所有的磷可分為顆粒態磷(particulate phosphorus)和總溶解態磷(total dissolved phosphorus,TDP), 總溶解態磷又細分為溶解態無機磷(dissolved inorganic phosphorus,DIP)和溶解態有機磷(dissolved organic phosphorus,DOP)兩個部分;溶解態無機磷通常是指游離態的正磷酸 鹽(orthophosphates,PO4³⁺, HPO4²⁺, H2PO4⁺),另外還包括焦磷酸鹽 (pyrophosphate), 無機聚磷酸鹽(inorganic polyphosphates);

溶解態有機磷由種種有機複合物構成包括核甘酸(nucleotides) 核酸(nucleic acid) 醣(sugars) 酯質(monophosphate esters)。 由於在測定技術上的困難,所以在操作定義上將溶解態磷則分成可溶 解易反應的磷(soluble reactive P,SRP)與可溶解不易反應的磷 (soluble nonreactive P,SNP),可溶解易反應的磷包括溶解態無 機磷和不穩定的有機磷(labile organic phosphate),定義上是以 可用抗壞血酸鉬磷還原比色法(Murphy and Riley,1962)測定為區 分。本論文中研究的磷酸鹽即為可溶解易反應的磷(SRP)。

溶解態磷酸鹽通常在自然水體中的濃度相當低,往往成為生物限 制因子(bio-limiting factor)之一,控制著基礎生產力(Riley and Chester,1971;Butler et al.,1979)。在大洋生態系統中,氮和磷 的供給速率控制著生態系統生產力(Smith et al.,1986)。磷通常和氮 相伴發生,它控制全世界海洋的新生產量和輸出產量。N/P比率的重 要性如同限制性營養鹽輸出量的比率,很可能同時隨時間和空間變化 (Codispoti,1989;Karl,1995)。Codispoti(1989)提出在長時間的尺度 觀察下,磷可能才是全球海洋中控制生物量和生產率的限制營養鹽, 特別是在淺水、碳酸鹽支配的生態系統;此外,Karl(1992)亦提出 生物固氮作用(N_2 fixation)的機制有可能緩和了生態系統中長期的 氮限制(N limitation)現象,而這種現象一般相信存在於副熱帶的北

太平洋區。在這種貧營養鹽的大洋區,磷循環對大洋表層水的微生物 是十分重要的。然而作這方面的研究卻非常的少,特別是再拿來和氮 循環作比較者,這是為什麼測量低濃度溶解性磷的方法不夠精確和準 確的原因。

以前磷酸鹽的測定在表層常會測不到吸光值,其值多趨近於0或 是低於偵測下限而不可信賴。隨著科學愈來愈發達,儀器愈來愈先 進,極低濃度的測量方法逐漸發展進步,近年來在表層極低濃度磷酸 鹽的研究(Perry and Eppley,1981;Herbland,1984;Sorokin,1985; Harrison and Harris,1986;Orrett and Karl,1987)也逐漸受到重視,其 目的除了瞭解在表層是否真的有磷酸鹽存在,如果有,其濃度是否有 變化、是什麼原因造成的變化都是近來研究的方向。其它的目的還有 找尋生物的限制因子(limiting factor),限制因子為研究海洋中磷 的再生速率(regeneration rate)及新生產力(new production)的重 要因子。因此,在亟需解決海洋表層的大疑團下,發展低濃度磷酸鹽 的測定方法對當前的研究相當重要。

1.2 分析方法的原理與沿革

傳統上,定量分析海水中溶解性無機磷酸鹽,其原理係採用抗壞 血酸鉬磷還原比色法(Murphy and Riley,1962)為主。此方法是使

樣水中的磷酸根離子與酸性鉬酸鹽(12-molybdophosphoric acid, 12-MPA)反應,形成黃色的磷鉬複合物(Dodecaphosphomolybdenum) 後,因為此複合物的吸光係數不高,故需再加入抗壞血酸還原成藍色 的磷鉬複合物,再由分光光度計測量之。其反應方程式如下: PO₄³⁻ + Molybdate + H⁺

 \rightarrow 12-polymerized molybdenum phosphoric acid (12MPA) 12-MPA + Sb^{3+} + Ascorbic acid

 \rightarrow Reduced phosphoantimonyl molybdenum blue

在貧營養鹽的大洋環境,溶解性磷的濃度接近 Murphy and Riley 方法的偵測下限,由於其偵測下限僅達 70 nM,對於磷酸鹽濃度低於 100 nM 的樣水,其數據的可靠性也就愈低。對於傳統的方法靈敏度 不足,有了許多修正和新的分析方法來改進偵測下限及磷分析的精確 度,例如:使用較長的光徑,或是利用有機溶媒自水溶液中萃取和濃 縮:Stephens(1963)以異丁醇(isobutanol)萃取低濃度的還原態 磷銻鉬藍複合物,再以分光光度法於 690 nM 偵測,其偵測下限可達 6 nM;但異丁醇與水有互溶性,在定量及操作上非常不方便。另外, Fernandez et al.(1985)以加入孔雀綠(malachite green oxalate) 染劑,將莫耳吸光係數提高到 120000 cm⁻¹M⁻¹,為 Murphy and Riely (1962)方法(22400 cm⁻¹M⁻¹)的 6 倍;但孔雀綠法極易吸附且試劑 空白值相當高。此外,也有使用 X-ray 螢光光度計(X-ray

fluorescence) 或是將磷轉換磷化氫氣體(phosphine gas)再使用 氣相層析法(gas chromatography)或是化學螢光法(chemiluminescence)。

本論文引用的低濃度磷酸鹽測定方法是 Karl and Tien(1992) 提出的利用鎂引發的共沉澱法(MAGnesium-Induced Coprecipitation(MAGIC)),此方法其原理係將定量的海水加入共 沉澱劑(Co-precipitatant),使磷可吸留(Occluded)或是吸附 (Adsorbed)在膠狀的共沈澱物內或是表面上,將此共沈澱物以離心 (Centrifugation)的方法分離與回收,然後以少量的強酸將之重新 溶解於水溶液中,再以抗壞血酸鉬磷還原比色法分析之。

Karl and Tien (1992) 是利用樣水中的溶解態會反應的磷酸鹽 (soluble reactive phosphorus, SRP) 和氫氧化鈉反應, 使磷酸根 與氫氧化鎂產生共沉澱, 再將其上層液移去, 然後將共沉澱物再次溶 解, 再依分光光度法測得, 可得 100 倍的濃縮倍數, 偵測極限達 1 nM, 對於欲了解表層水中低濃度磷酸鹽的變化有極大的幫助。

1.3 研究目的

一般相信, 在副熱帶貧營養鹽的大洋區, 磷循環對大洋上層水的 微生物是十分重要的, 溶解態磷酸鹽通常在自然水體中的濃度相當

低,卻往往成為生物限制因子(Bio-Limiting factor),控制著基礎 生產力(Riley and Chester, 1971;Butler et al.,1979)。所以瞭 解低濃度磷酸鹽的變化對解釋大洋上層水之營養鹽動力學來說,其有 相當的重要性(如:Wu et al.,2000)。

在沿岸,除了生物作用造成營養鹽的變化外,還有潮汐、內波等 等物理作用的影響也會造成濃度上的變化,在生物及物理的交互作用 之下,如何分辨哪些變化是屬於物理作用,哪些變化是由於生物作用 所造成。

本研究利用 MAGIC 方法探討近岸(紅柴溝)及深海(SEATS 測站)之 上層水體中低濃度磷酸鹽在時間和空間上的變化,以瞭解副熱帶之貧 營養鹽海域表層之營養鹽動力學。本研究以上層海水為研究之主要對 象,在此上層海水係指溫躍層以上之海水。不過,本研究並非僅探討 上層水體,研究範疇仍然包括對整個水體之觀測及描述。

第二章 低濃度磷酸鹽之測定

低濃度磷酸鹽的測定方法是引用 Karl and Tien(1992)的"鎂 引發的共沉澱法"(MAGnesium-Induced Coprecipitation(MAGIC)), 此方法最早曾由白書禎教授引進,隨後有李玉玲教授、吳景鋒博士、 鍾仕偉博士等加以利用,探討南海表層水之營養鹽動力學(Wu et al.,2002)。

MAGIC的原理是將定量的海水加入共沉澱劑 NaOH,海水中的 MgCl² 和 NaOH 反應產生 Mg(OH)²的膠乳狀物體,磷則吸附在膠乳狀的共沈澱 物內或是表面上,將此共沈澱物以離心的方法分離與回收,然後以少 量的強酸將之重新溶解於水溶液中,加入還原劑(Na₂S₂O₅及 Na₂S₂O₃)使 得五價的砷還原成三價的砷,去除砷干擾(Johnson,1971),再以抗壞 血酸鉬磷還原比色法分析即可得到該磷酸鹽的濃度。

本研究在分析方法上特別注意 Blank 的測定。(David M. Karl 個人通信),是利用過濾過的南海表層海水當作基質,使用 MAGIC 方 法在第一次共沈澱後取其離心後的上層液,經由同樣的方法經過再次 共沈澱的濃度值。

2.1 採樣方法

海水標本採樣是使用 SeaBird 的溫鹽深海探儀在搭配輪盤採水

器(conductivity-temperature-depth (CTD) rosette)系統,以20L的 Niskin 採水瓶來採集海水樣品。通常採水是在溫鹽深儀上收時取水。

裝樣水的瓶子使用 Nalgene 的 PE(polyethylene)瓶,出海前先 用無磷清潔劑清洗,再用 1M HCI 清洗,再以去離子二次蒸餾水 (Deionized Doubly-Distilled Water,簡稱 D³W)潤洗三次,最後再 以 D³W 謹慎清洗一次,方可使用。

在裝填樣水前,為了避免受到污染至少要以樣水潤洗三次,採樣 水時,裝填約三分之二滿以直立形式放入液態氮筒中急凍,以免急凍 時體積膨脹,造成海水樣品的外漏,急凍後儲存於冷凍庫中(-20)。

分析樣品前,需將樣水解凍回到室溫。本研究是在分析的前一天,先將放置於冷凍櫃的樣品移至(4)的冷藏櫃,經過約12小時 解凍,分析當天再靜置於實驗桌上,使之回到室溫才進行測定。

2.2 實驗器材

1.分光光度計 (Spectrophotometer SHIMADZU U-1201):單光 束,解析極限 0.001

2.石英光槽 (Starna Semi-Micro Cells): 光徑為 100mm, sample chamber 為 4mm 寬

3.振盪機 (Thermolyne Type 37600 Mixer)

4.離心機 (UNIVERSAL 16 , 最高轉速 4500rpm)

2.3 測定的方法

本研究採用的分析方法是根據 Karl and Tien(1992)所發展出來的"鎂引發的共沉澱法"(MAGnesium-Induced Coprecipitation, 簡稱 MAGIC)所設計,以下是試劑的配置、標準溶液的配置、工作溶 液的配置及實驗的步驟:

2.3.1 試劑的配製

所有的試劑至少要是分析等級(analytical grade)。由於本研究 所測定的磷酸鹽濃度是在 10⁻M 級,所以必須特別留意污染的潛在來 源。因此本研究採用 Fluka 的試劑產品 NaOH (Fluka BioChemika No.71689)來產生 Mg(OH)₂沈澱,採用 J.T.Baker 之產品 Instra -Analyzed HCI (Baker No.9530-33)來溶解沈澱物 (Karl and Tien,1992)。

以下化學試劑均以 D³W 來配製,即自來水先經過離子交換樹脂 後再經2次蒸餾而得。所有的試劑全在實驗前才配製,不要久存。 1.鉬酸銨溶液(ammonium heptamolybdate tertahydrate):取6g

(NH₄)₀Mo₇O₂₄ 4H₂O 溶於 200mL D³W 中, Merck GR 級。

- 2.抗壞血酸溶液 (ascorbic acid): 取 5.4 g C₀H₀O₀溶於 100mL D[™]
 中, Merck GR 級。此溶液應為無色,但隨時間會氧化,如變黃褐
 色則丟棄。
- 3.酒石酸銻鉀溶液 (potassium antimony () oxide tartrate hemihydrate):取0.3407g K(SbO)C₄H₄O₅ 0.5H₂O 溶於 250 mL D³W 中。
- 4.5N 硫酸溶液 (sulfuric acid): 取 100 mL 濃 H₂SO₄ (95-97% 1L
 =1.84 Kg) 以 D³W 稀釋至 720 mL。稀釋濃硫酸時,是將濃硫酸緩
 緩倒入水中並攪拌使其散熱均匀,順序不可顛倒。
- 5.酸性銻鉬混合試劑(Molybdenum blue mixed reagent):取8 mL 鉬 酸銨溶液、20 mL 5N 硫酸溶液、8 mL 抗壞血酸溶液、4 mL 酒石 酸銻鉀溶液混合,酒石酸銻鉀溶液最後添加。混合成酸性銻鉬試 劑,最後混合總體積 40 mL。此溶液即配即用,不可久存。需要注 意的是:鉬酸銨在高 pH 會與玻璃反應,所以配置過程中,在與硫 酸混和前儘量不要與玻璃容器接觸。混合時如果順序不對可能會造 成高空白值。另外最重要的是混合試劑中加入的氫離子與 Mo 的莫 耳比必須在 70-80 之間,如果氫鉬比低於 70,則會有鉬酸自我還 原干擾(Self-reduction),如果氫鉬比高於 80,則反應速率極慢 或不反應(Pai et al,1990)。

- 6.偏亞硫酸鈉溶液(sodium metabisulfite):取2.24 g 偏亞硫酸
 鈉(Na₂S₂O₅)溶於 16 mL D 中。
- 7.硫代硫酸鈉溶液 (sodium thiosulfate pentahydrate):取4.43g 硫代硫酸鈉 (Na₂S₂O₃ 5H₂O M.W=248.18g/mol)溶於 500 mL D³W 中。
- 8.還原試劑(Reducing reagent):取 5.6 mL 5N 硫酸溶液、2.4 mLD³W、
 16 mL Na₂S₂O₅溶液、16 mL Na₂S₂O₃. 5H₂O 溶液,混合成還原試劑,
 此溶液體積 40 mL。
- 2.3.2 磷酸鹽標準溶液

為了使用標準添加的方法來制定檢量線,需要磷酸鹽之標準溶液,本研究中使用外購之標準溶液或自配之標準溶液來配製不同濃度 之磷酸鹽工作溶液。

外購之標準溶液為 Merck 出的 Titrisol 標準品:磷酸鹽標準溶液(Titrisol Phosphatestandard, C=1000 £mg PO₄³、V=2000.22 mL (H₃PO₄ in water)),由此換算所得標準溶液之磷酸鹽濃度為 5264 μ M。

自配之標準溶液:以天秤秤取少許(約2.0g)的磷酸二氫鉀 (Anhydrous Potassium dihydrogen orthophosphate,KH₂PO₄),以冷 凍乾燥3天後,再秤取約0.68g的無水磷酸二氫鉀(KH₂PO₄)溶於1000mL 的 DW 中。此溶液濃度約為 5000 μ M,再依需要稀釋。溶液儲存於褐

色瓶中,可使用數月。

- 2.3.3 分析步驟(圖2-1)
- 將待測樣水激烈搖混使其混合均勻後,取 50ml 置於 50ml 的 PP(polypropylene)離心管中。
- 2.添加 0.3 ml 1N NaOH 加入樣水,此時會產生白色乳狀沈澱物,此 為包含 P 和 As 的吸附的 Mg(OH)2膠體。充分搖晃混合後,在室溫下 靜置 15 分鐘。
- 4.將樣水置入離心機中,以4000rpm 離心 10 分鐘。
- 5.將上層液吸取出來,經由相同的實驗步驟,作為空白值。
- 6.添加 4 ml 0.1M HCI,充分搖晃混合直到沈澱物完全溶解。
- 7.添加 0.2 ml Reducing reagent,充分摇晃混合後,靜置 15 分鐘。
- 8.添加 0.5 ml Molybdenum blue mixed reagent(Murphy and Riley 1962;Strickland and Parson 1972),充分搖晃混合後,靜置 20 分鐘以上。
- 9.上分光光度計,使用 10cm 光槽,以 880nm 測量其吸光值。

2.3.4 檢量線及背景值

將磷酸鹽標準溶液,先以DW稀釋1000倍;再分別以定量吸管 (autopipette)取2mL、4mL、6mL置於250mL的定容瓶中以SSW (South-China Sea Surface Water)稀釋至固定體積,作為工作溶液。 本研究所使用的定容吸管及定容瓶皆經過校正(見附錄一)。本研究 中使用之基質海水為 OR1-639 航次所取得之南海表層海水,並經過過 濾保存使用。

將磷酸鹽工作溶液及零添加基質海水,以2.3.3之分析步驟進 行,作三重複,最後在分光光度計上以波長880nm測量,並記錄其吸 光值,各次之檢量線數據皆列於附錄二。

背景值(Blank)的測定是利用基質海水,使用 MAGIC 方法在第 一次共沈澱後取其離心後的上層液,再由同樣的實驗步驟,求得的吸 光值作為背景值。

檢量線是利用零添加及標準添加之 SSW 所得到的吸光值及背景 值來計算,方法如下:

背景值修正 Ac = A-B

Ac:修正後之平均吸光值

A:平均原始之吸光值

B:平均背景吸光值

2002 年 8 月至 10 間初步進行低濃度磷酸鹽測定時並未測定背景吸光值。該其間之數據計算乃利用後來得到之平均吸光值來計算。

檢量線之迴歸:A=mC+A^o

A:⁰:修正過之平均零添加基質海水吸光值,迴歸時,迴歸線需

通過 A^⁰。

m:斜率(1/nM)

圖 2-2 顯示檢量線之一例,其數據見表 2-1,標準添加之三重複 標本所得到吸光值都相當一致,其標準偏差亦列於表 2-1。各次檢量 線之斜率、背景吸光值及其對應之濃度、零添加海水中之修正吸光值 及濃度列於表 2-2。

2.4 結果計算及討論

表 2-2 顯示本研究進行之十次 SRP 分析,其檢量線之斜率都在 1.13-1.21*10⁻³ /nM 之間,平均為(1.17 ±0.03)*10⁻³ /nM。

莫爾吸光係數()之計算:

$$\boldsymbol{a} = m \times \frac{V_{CS}}{VS} \times \frac{Vf}{Vcs} \times \frac{1}{L} \times 10^9$$

m:斜率(1/nM)

 V_{cs} :樣水濃縮後體積(mL)

V_s:樣水體積(mL)

V_f:樣水最後體積

L:光徑長度

用平均檢量線斜率計算所得之莫爾吸光係數約為 22700/M/cm, 與磷酸鹽測定之經驗莫爾吸光係數 22400/M/cm 相近(白書禎教授提 供)。至於背景吸光值在 2002 年 11 月至 2003 年 1 月間所做的五次各 次平均值都 0.007-0.009 之間也是很穩定。所以利用其平均值來重新 計算 2002 年 8 月至 10 月間之數據,所造成的誤差應當不大。造成背 景吸光值的可能是使用的試劑(如 NaOH)中所含的磷酸鹽,至於是否 有其他之原因並不清楚,值得未來進行深入探討。

偵測極限之計算:本研究的偵測極限 (Detection limit,DL) 是 濃度測定之標準偏差的三倍。濃度測定之標準偏差(\bar{s}_{τ})包含兩部分, 一為標本吸光值之偏差(\bar{s}_{s}),另一部份為背景吸光值之偏差(\bar{s}_{s})。 $\bar{s}_{\tau}^{2}=\bar{s}_{s}^{2}+\bar{s}_{s}^{2}$, \bar{s}_{s} 及 \bar{s}_{s} 都為0.00058,可得 \bar{s}_{τ} 為0.0008。

$$DL = \frac{\mathbf{s}_T}{m} \times 3$$

 \bar{s}_{τ} : 零添加吸光值的標準偏差

m:檢量線斜率

本研究中零添加吸光值的標準偏差為 8*10⁻⁴, 對應的偵測極限為 2nM。如果將分光光度計之解析極限 0.001 為基準,則偵測極限為 2.5nM。

2002 年 8 月至 10 月間測定低濃度 SRP 時並未測定背景吸光值, 為修正背景吸光值,本研究乃採用 2002 年 11 月至 2003 年 1 月間所 做的五次之平均背景吸光值來作修正。表 2-2 顯示經過修正後計算所 得之基質海水中 SRP 之平均濃度平均為 8.8 ± .3nM,與 2002 年 11 月

至 2003 年 1 月間所測得之平均值 9.4 £0.9 m 相近,顯示用此方法修正應為一合理方式。

待測樣品濃度的計算:待測樣品的濃度則是經由待測樣品的吸光 值扣除 Blank 值後,除以斜率即可求得。可由下列公式表示:

 $C_s = (A_s - B)/m$

Cs:標本所含的 SRP 濃度

As:標本之原始吸光值

B:平均背景吸光值

測量精確度:由標準添加之三重複標本得到吸光值之標準偏差在 ±0.0005 ±0.002之間,所對應之濃度在±0.5 1.8nM,平均為± 0.7nM。若以分光光度計之解析極限 0.001為基準,則測量精確度為± 0.8nM。

2.5 小結

1.本研究利用"鎂引發的共沉澱法"(MAGnesium-Induced Coprecipitation(MAGIC)),濃縮海水中的磷酸鹽以測定低濃度 的磷酸鹽,其吸光值是以10cm光徑的光槽在波長880nm測定。本 研究特別注意背景值(Blank)的測定,是利用過濾過的南海表層 海水當作基質,使用MAGIC方法在第一次共沈澱後取其離心後的上 層液,經由同樣的方法經過再次共沈澱的濃度值。

- 2.自 2002年11月到 2003年1月進行的五次低濃度磷酸鹽分析之背 景吸光值在0.007-0.009之間,換算濃度為6.4 £0.4 nM。2002年8 月至10月間測定低濃度磷酸鹽時並未測定背景吸光值,為修正背 景吸光值,本研究乃採用 2002年11月至2003年1月間所做的五 次之平均背景吸光值來作修正,修正後計算所得之基質海水中磷酸 鹽之平均濃度平均為8.8 £1.3 nM,與2002年11月至2003年1月 間所測得之平均值9.4 £0.9 nM相近,顯示用此方法修正應為一合理 方式。
- 3.本研究中低濃度磷酸鹽之檢量線之斜率都在 1.13-1.21*10⁻³ /nM之間,平均為(1.17 ±0.03)*10⁻³ /nM,其值頗為穩定。其換算的莫爾吸光係數約為 22700/M/cm,與磷酸鹽測定之經驗莫爾吸光係數22400/M/cm相近。偵測極限是以零添加吸光值的標準偏差所對應之濃度的三倍來計算,本研究著偵測極限為 1.5nM。若以分光光度計之解析極限 0.001 為基準,則偵測極限為 2.5nM。

第三章 紅柴溝磷酸鹽之測定

3.1 紅柴溝簡介

紅柴溝位於台灣西南沿海之陸棚上,呈西北東南走向,形成一 個狹長的沈谷(sunken valley),沈谷開口向西北,沈谷向東南邊封 閉,谷口較深可達到約 300m,愈往東南深度愈淺。洪楚璋老師曾在 紅柴海域做過溫差與生態環境之調查(Hung et al.,1983),發現這 裡的營養鹽及葉綠素濃度高於一般台灣的海岸之海水。其調查方式乃 是利用一般環境調查方式,以一年四次調查為準。由於紅柴溝受到強 烈的潮汐作用的影響,在潮汐週期之中就可能有複雜的變化,故本研 究利用時間序列方式探討在潮汐週期內紅柴溝的化學水文變化。

3.2 探測與分析

3.2.1 水文探測及採樣

本研究是選定台灣西南沿海的紅柴溝作為研究的地點,利用海研 一號 676 航次,於 2003 年 3 月 18 日到 20 日,在紅柴溝作連續的時 間序列觀察,選定的測站位置是在東經 120 度 41 分、北緯 21 度 58 分(圖 3-1),此地水深約 290 公尺。此航次中,一共進行了 14 個梯 次的 CTD 探測(表 3-1),其中進行海水採樣的批次分別是 Cast 4(19:50)、Cast 7(01:30)、Cast 9(07:30)、Cast 12(14:00)。

採樣是利用 CTD Rosette 系統搭配 Go-Flo 採水瓶,採樣的深度 為 5,10,20,40,60,80,100,150,200,250 公尺,樣水是以 Nalgene 的 PE 瓶存放,在裝填樣水前,為了避免受到污染至少要以樣水潤洗三 次,採樣水時,裝填約三分之二滿以直立形式放入液態氮筒中急凍, 以免急凍時體積膨脹,造成海水樣品的外漏。急凍後儲存於冷凍庫中 (-20)。

3.2.2 磷酸鹽的分析

分析樣品前,需將樣水解凍回到室溫。本研究是在分析的前一 天,先將放置於冷凍櫃的樣品移至(4)的冷藏櫃,經過約12小時 解凍,分析當天再靜置於實驗桌上,使之回到室溫才進行測定。

操作步驟及計算:

試劑的配製:見附錄四。

標準步驟:在容積為 100mL 的燒瓶或燒杯中, 置入 50mL 樣水, 加

入 4mL 的 HsbMo 試劑,以及 4mL ASC 試劑,充分混合, 靜置約 5 分鐘使反應完成,將樣水置入 10cm 吸光槽中測 量吸光值。

空白組:以 D³W 作三個空白組

檢量線:將磷酸鹽工作溶液及零添加 D³W,按標準步驟操作,並測 定其吸光值,作三重複組,圖 3-2 顯示檢量線之一例,數據 列於表 3-1。

測量精確度:由標準添加之三重複標本得到吸光值之標準偏差為 ±

0.0006,所對應之濃度為 0.03 µ M。若以分光光度計

之解析極限 0.001 為基準,則測量精確度為 £0.05µ M 樣水濃度的計算:

 $C_s = (A_s - B)/m$

Cs:標本所含的 SRP 濃度

As:標本之原始吸光值

B:空白吸光值

m:檢量線斜率(1/µM)

莫爾吸光係數()之計算:

$$\mathbf{a} = m \times \frac{Vf}{Vs} \times \frac{1}{L} \times 10^{6}$$
m:斜率(1/µM)

V_s:樣水體積(mL)

 V_f :樣水最後體積(mL)

L:光徑長度(cm)

由檢量線斜率換算之莫爾吸光係數為 21160/M/cm, 與經驗莫爾 吸光係數 22400/M/cm 相近(白書禎教授提供)。

3.3 結果

首先說明紅柴溝的水文變化。本研究從 2003 年 3 月 18 下午 3 點 到 2003 年 3 月 19 下午 6 點,一共進行 14 個梯次的 CTD 測量,其溫 度、鹽度、密度隨深度的時序變化如圖(圖 3-3)所示。水溫變化為 隨深度而遞減,溫度在表水的變化範圍為 24.6 25.4 ,在底水 的變化範圍為 12.6 16.9 。鹽度在表水的變化範圍為 34.51psu

34.67psu,在底水的變化範圍為 34.63psu 34.65psu,在中層有 極大值,其變化範圍為 34.69 34.77psu。鹽度極大值出現的深度變 化範圍是 67 172 公尺。密度隨深度而遞增,σ_θ在表水的變化範圍為 22.9 kg/m³ 23.2kg/m³,在底水的變化範圍為 25.3 kg/m³ 25.9 kg/m³。

為了解潮汐對紅柴溝所造成的影響,我們利用屏東蟳廣嘴(圖 3-1) 潮位站(21 °59 'N, 120 °42 'E)來代表紅柴溝之潮位。二地相距約 4

公里,以潮波速度 80 公里/小時來計算,二地之潮汐相位差異應在 5 分鐘以內。與航次同一時段內蟳廣嘴的潮位變化(中央氣象局提供) 見圖 3-3a;時間範圍是 3月 18 日下午 3 點到 3月 19 日晚上 6 點, 縱軸為潮位變化的高度,單位為公尺;圖上亦標上所有梯次的觀測時 間,以顯示各採樣梯次的潮汐。由圖 3-3a 可發現,這段時間內共經 過兩個週期的潮汐變化,在 18 日晚上 6 點及 19 日早上 8 點有最高水 位出現,19 日凌晨 1 點及 19 日下午 1 點有最低水位出現。

將蟳廣嘴的潮位變化與溫度、鹽度、密度的時序變化作比較(圖 3-3),由圖中可以發現在退潮時,低溫高鹽的水向上抬升;漲潮時, 表層高溫低鹽之海水變厚,而底層低鹽、高密度之水退出紅柴溝。此 一變化可由漲退潮時,海水之流向而說明:漲潮時,台灣西南沿海之 海水向西北流,即由巴士海峽向台灣海峽流(詹,1998),此時高溫低 鹽的水在表層累積呈現較厚的一層;退潮時沿岸海水向東南流,即由 台灣海峽流向巴士海峽。此時表層高溫海水退出紅柴溝而深層海水自 下層向上補入,造成高密度的水向上抬昇。

將紅柴溝四個採樣梯次的溫度、鹽度、磷酸鹽濃度對深度的剖面 圖(圖 3-4)一起觀之,四個梯次的磷酸鹽濃度在表層皆呈現低值,磷 酸鹽濃度於溫躍層開始明顯增加,鹽度的極大值出現在溫躍層之內, 磷酸鹽濃度在底水達到最高,其最大濃度變化從 0.8µM到 1.5µM。
3月19日凌晨1:30 溫躍層最淺,自30m 處溫度開始明顯下降,磷酸 鹽濃度同步上升,底層因冷水團入侵,最低溫達到12.5,磷酸鹽 最高濃度達1.5μM,此時鹽度最大值出現在約50m,較其他梯次鹽度 最大值出現的深度淺。

由磷酸鹽濃度、葉綠素濃度對深度的剖面圖(圖 3-5)觀之,在表 層,葉綠素濃度變化範圍為 0.25 0.52µg/l,葉綠素濃度的極大值 出現在溫躍層之內,其變化範圍為 0.55 0.73µg/l,極大值出現的 深度範圍是 20 60m。較磷酸鹽的濃度開始快速增加的深度略淺。極 大值以下,葉綠素濃度隨深度遞減,到 200m 以深,則趨近於零。圖 3-6c 顯示 CTD 測得的螢光值隨時間之變化。螢光值之範圍很小,最 高值僅達 0.2µg/l,由於螢光計並未利用葉綠素測值加以校正,故 僅用以作定性之描述。如同葉綠素之測定結果,螢光值在表水較低, 最大值出現在 10-50m 之間,且隨潮汐作用而改變。螢光值有顯著的 日夜差異,在午夜之後到次日中午以前都頗低,最大之螢光值出現在 午後較溫暖之上層水體中,顯示浮游植物光合作用之效應。

雖然表層水中磷酸鹽之濃度都很低,在0.1µM之下,但利用 MAGIC 方法所測得表層之低濃度磷酸鹽顯示有明顯之變化(圖 3-7), 其變化幅度 10 50nM 遠超過 MAGIC 方法之平均標準偏差(<2nM)。 造成這些變化有各種可能之原因,例如:水團的改變,生物的吸收等,

將於下一節深入探討。

由溫鹽圖(圖 3-8)觀之,14 個採樣梯次的溫鹽特性都落在狹窄 的範圍之內,表示溫鹽變化大致是同一個水團之往復運動所造成,鹽 度最高值出現在 19 21 ,在此範圍內,鹽度的變化較大,表示 在水柱中水團有上下混合的情況,造成鹽度極大值之下降。

3.4 討論

圖 3-5c 顯示在紅柴溝內磷酸鹽濃度的變化頗大,但將磷酸鹽對 σ_θ或溫度作圖(圖 3-9),則磷酸鹽隨密度或溫度之變化有一致性, 表示磷酸鹽濃度的變化主要是受到水體運動的控制。磷酸鹽之濃度與 密度或溫度的關係可分成三段:表層、次表層及底層(圖 3-9)。圖 3-3b 顯示表層是 T > 24 ,次表層是 20 < T < 24 ,底層是 T < 20 。表 層大致是代表混合層,次表層與底層之分界大致是溫躍層的位置,表 示溫躍層以上及以下各自有不同的混合趨勢。

在表層水中混合作用十分重要,雖然在表水中溫鹽並非守恆性示 蹤劑(Tracer),由圖 3-10a 可知,在表層中溫鹽的關係大致是呈現線 性之關係,顯示在潮汐週期的時間尺度下,表層海水中守恆性示蹤劑 的分佈應該可視作表水與湧升水之兩端之混合作用(two-end member mixing)。磷酸鹽的分佈除了受到混合作用,應當也受到浮游植物吸 收作用的影響。因此,將磷酸鹽對溫度作圖(圖 3-10b),對應於同 一溫度,磷酸鹽的濃度變化頗大,最大的變化範圍超過 50m。對應 於各溫度之最大磷酸鹽濃度大致形成一線性關係。我們取最外側的三 點求得一個直線,其餘的數據都落在此直線之下方。此一關係之迴歸 方程式為

 $(PO_4) = -0.0067 (T) + 25.373$

〔PO4〕:磷酸鹽濃度,單位為 nM

〔T〕:溫度,單位為

假設這條直線代表混合曲線,實際觀測到的磷酸鹽濃度與混合曲線間的水平差距為 PO4,為磷酸鹽被吸收所造成的欠缺(deficit), 由 PO4的日夜時序變化(圖 3-11a)可以發現磷酸鹽的欠缺值隨著日 夜時間而有所變化,在下午2點時 PO4達到最高,表示磷酸鹽被吸 收的最多。直接比較第七梯次(01:30)與第十二梯次(14:00)之磷酸鹽 分佈可以發現,雖然二者都是在低平潮附近(圖 3-6),但 14:00時的 表層水中磷酸鹽濃度(22-33nM)要明顯低於午夜(01:30)時的濃度 (39-63nM)。同樣的變化在葉綠素對時間(圖 3-11b)的關係也可以發 現,因此推論在紅柴溝表層的磷酸鹽受到日夜的變化之影響,在白天 磷酸鹽濃度因生物作用而消耗。

將 PO₄對 ChI-a 作圖(圖 3-12),則可以得到一個良好的正相關

性:

 $(Chla] = 6.3 \times 10^{-3} (PO_4) + 0.034 (R^2 = 0.73)$

[Chla]:葉綠素濃度,單位為µg/l

[PO4]:磷酸鹽濃度,單位為 nM

此線性正相關表示浮游植物的生長吸收磷酸鹽形成葉綠素,由此 推論,紅柴溝之潮汐作用會將營養鹽向上層補充,經由垂直混合作 用,使營養鹽進入有光層,進而強化浮游植物之生長。

3.5 小結

 本研究利用海研一號 676 航次,從 2003 年 3 月 18 下午 3 點到 2003 年 3 月 19 下午 6 點對紅柴溝作連續的時間序列觀察,一共進行 14 個梯次的 CTD 測量,包括 4 個梯次的海水標本採樣。本研究對海水 標本進行磷酸鹽之分析。磷酸鹽濃度在表層皆呈現低值,磷酸鹽濃 度於溫躍層開始明顯增加,在底水達到最高,其最大濃度變化從 0.8μM 到 1.5μM。100m 以淺的海水,利用 MAGIC 方法分析,測定 低濃度之磷酸鹽變化,結果顯示磷酸鹽濃度有明顯之變化,其變化 幅度 10 50nM。

2.由屏東蟳廣嘴潮位站(21 59 'N, 120 42 'E),與航次同一時段內

的潮位變化中,可以了解在採樣時間內共經過兩個週期的潮汐變 化,在18日晚上6點及19日早上8點有最高水位出現,19日凌 晨1點及19日下午1點有最低水位出現。在退潮時,沿岸海水向 東南流,此時表層高溫海水退出紅柴溝而深層海水自下層向上補 入,造成低溫高鹽高密度的水向上抬昇。漲潮時,台灣西南沿海之 海水向西北流,此時高溫低鹽的水在表層累積呈現較厚的一層,而 底層低溫、高密度之水退出紅柴溝。

- 3.雖然,紅柴溝內磷酸鹽隨時間之變化很大,但其與密度或溫度之關 係有一致性,表示磷酸鹽濃度的變化主要是受到水體運動的控制。
- 4.表水中(5-20m)在兩次低平潮期間,下午2:00時之磷酸鹽濃度 (22-33nM)要明顯低於午夜01:30之濃度(39-63nM)。表層磷酸鹽被 吸收所造成的欠缺(PO4),也在下午2點時 PO4達到最高,而葉 緣素也達到最高值。由此推論,紅柴溝之潮汐作用會將營養鹽向上 層補充,經由垂直混合作用,使營養鹽進入有光層,進而強化浮游 植物之生長。

第四章 南海時序測站磷酸鹽變化之探討

近代海洋學者咸信海洋中的生物及化學變化及元素循環會隨著 大氣及海洋的物理作用而有所改變。各種物理作用,如聖嬰現象、季 風、內波、內潮乃至於颱風都各自具有不同的發生頻率及週期。要解 析這些物理作用對海洋中生物地球化學循環的影響,建立長期時間序 列研究站便是一種重要的研究方式(Karl, 1996)。海洋生地化時間序 列的研究需要遠離陸地之直接影響、避免人為活動干擾、物理性質穩 定之水體做長期連續的調查,以期了解各種海洋生地化作用在日夜、 季節、年間等不同時間尺度(time scale)內的變異。1988 年美國 國家科學基金會(NSF-USA)選定北太平洋之夏威夷執行 Hawaii Ocean Time Series(簡稱 HOT)及北大西洋之百慕達推行 Bermuda Atlantic Time-Series Study(簡稱 BATS)的時間序列研究。台灣於 1998 年在 國科會資助下,由國家海洋科學中心(NCOR)進行『南海時間序列研 究站-SEATS』(South East Asia Time Series Station)時間序列研 究(Shiah et al.,1999)。

4.1 南海簡介:

南海位居亞洲大陸東南隅,就其地理位置而言,南海南起南緯5 S,北至台灣海峽南端北緯22 N,呈東北-西南走向,橫跨經度15° (105 E 至 120 E),面積廣達三百五十萬平方公里,最大深度超過 5000 公尺,為西太平洋最大的大陸邊緣海,四周島陸為鄰,其西北 接中國大陸,西為越南,西南臨馬來西亞,南通印尼,東側則為菲律 賓之巴拉望及呂宋島,台灣則位於其東北(圖 4-1)。南海亦屬一半封 閉之海盆,北方藉由台灣海峽與東海相通,東北方經由呂宋海峽與太 平洋海水交換,南方則為廣大且淺的大陸棚,其他另有少許狹窄的缺 口與外界海水相通(謝以萱,1981)。

其內部的環流及其與周邊海域的海水交換速率,決定了南海的水 質,尤其是南海的深海水質。水深 200 公尺以下的南海水,在水平方 向上只能經由呂宋海峽與太平洋或民多羅海峽(Mindoro Strait)與 蘇祿海(Sulu Sea)的海水交換(陳鎮東,2002)。

4.2 南海時序測站

國家海洋科學中心(NCOR)在國科會支助下推動『南海時間序列 研究站-SEATS』(South East Asia Time Series Station)長期研究 計畫,對南海之水進行長期觀測,定期的收集南海水體之物理、化學 水文及生物資料。

SEATS 開始於 1998 年 8 月,最初主要測站為 A1(19 №, 118.30°
E),接近呂宋島之西側。之後於 1999 年 8 月,將主要測站移至 S1(18

N,116 €);目前則以附近之 KK1 站(18.25 N,116 E)為主。迄今總 共完成 20 個以上航次的時間序列測量。近年來,以定期二 三個月 至 KK1 測站,作連續 36 小時以上的密集海況觀測,進行 CTD 探測及 水樣採集。

SEATS 之研究成果已有部分發表; Wong et al.,(2002)發現在溫 躍層中氮過剩值(N^{*})有季節性之變化,可能與固氮作用有關; Wu et al.,(2003)則發現表層海水中磷酸鹽自冬季到夏季有遞減現象,顯示 生物對磷酸鹽之利用在夏季很旺盛,可能與固氮作用有關。

本時序研究所採用之海水樣本,是利用三個航次所得:2002年3 月 19 日至 4 月 2 日海研一號 639 航次,2002年6月30至7月4日 海研三號 794 航次,2002年8月31日至9月6日海研一號 656 航次 本研究進行低濃度磷酸鹽之分析,由於本研究對 MAGIC 方法之背景值 特別仔細測定,因此有助於探討表水中磷酸鹽之時序變化。此外本研 究也特別發展了利用時序探測之平均法,以除去短週期之變化(如: 潮汐、內波等),得到具可代表該航次之平均狀態的化學水文剖面圖 (profile)。以下簡稱代表性剖面。

4.3 材料與方法

4.3.1 採水與探測方法

本研究所使用之 CTD 為 Seabird SBE-911plus, 其溫度探針每年

的飄移量應低於 £0.0002 K/K(陸澍華等, 1997)。目前國內三條研究船 之 CTD 約每年校正一次, 故溫度誤差應小於 £0.006K。 導電度探針每 年之飄移量約在 £0.0001S/m 之間,對應之鹽度誤差在 £0.002 以內。 溫、鹽度探針之精確度則約為上述誤差之 1/10 到 1/5。由溫鹽度計 算所得之 $\sigma_{\rm e}$ 值的誤差應在 $\Phi_{\rm e}$.003g/kg 以內。SEATS 的採水方式是黃天 福教授所設計(表 4-1) , 主要的探測方式是在主要測站 KK1 站進行連 續 36 小時以上的 CTD 物理水文資料收集,其間約每 3-4 個小時進行 一個梯次,每個梯次的 CTD 在 0-100m 以 0.5 m/s 的速度下放, 100-3000m 以1 m/s 的速度下放,上收亦同。採樣是以附掛在 CTD Rosette 上的 Go-Flo 採水瓶採集,採樣的深度見表 4-1,每個深度 停2分鐘使採水瓶內的樣水可與周圍達到充分之平衡。每個航次通常 採集的水樣只有一個完整的(0-3000m)垂直剖面 , 是由多個梯次的海 水樣本所組成(表 4-1),梯次之多寡視每次可採集的水樣數量而定, 多則 5-6 梯次, 一般為 3-4 梯次。

樣水是以 Nalgene 的 PE 瓶存放, 在裝填樣水前,為了避免受到 污染至少要以樣水潤洗三次,採樣水時,裝填約三分之二滿以直立形 式放入液態氮筒中急凍,以免急凍時體積膨脹,造成海水樣品的外 漏。急凍後儲存於冷凍庫中(-20)。

分析樣品前,需將樣水解凍回到室溫。本研究是在分析的前一

天,先將放置於冷凍櫃的樣品移至(4)的冷藏櫃,經過約12小時 解凍,分析當天再靜置於實驗桌上,使之回到室溫才進行測定。

在磷酸鹽的分析方面,100m以淺用 MAGIC(MAGnesium-Induced Coprecipitation)(Karl and Tien,1992)方法分析(見第二章),其 精確度優於 £0.8nM。在100m以深係直接採用抗壞血酸鉬磷還原比色 法(Murphy and Riley,1962),其精確度為 £0.05µM(這部分由海科 中心海化組負責分析)。其他的營養鹽及化學水文資料亦由海科中心 海化組負責分析。

4.3.2 化學水文平均狀態之求取

由於海洋的化學水文變化的週期有長有短,變化的幅度各有不 同,南海時間序列(SEATS)研究的主要目的就是要知道南海營養鹽 分佈的季節性變化,但除了季節性變化,尚有高頻的變化。由最近的 觀測得知,南海之孤立波造成水體的垂直振幅可超過100m(張明 輝,2001),而這些內波之出現不像一般近岸之潮汐變化那樣有規律 性。因此如何除去高頻的變化,找到具有代表性的化學水文垂直變 化,乃是一重要課題。本研究參考HOT計畫中等密面之深度平均方 法,從多次的CTD探測結果取得一個代表性的垂直分佈(Dore and Karl,1996),其數據處理之步驟如下:

1. 取得 CTD 資料:

將該航次 SEATS測站時間序列下放及上收的 CTD 原始資料轉成深 度(以壓力表示,單位為 db)溫度、導電度、密度(σ_θ,σ_t)鹽度、 位溫等數據。

2. 求 $\mathbf{v}_{\sigma_{\theta}}$ 之平均深度剖面:

求取某一 σ_{θ} 之平均深度的方式,並非直接將各 CTD 梯次所觀測到 之深度的平均。乃是利用對時間積分再平均的方法,求得 σ_{θ} 固定格點 之平均深度後,再使用迴歸統計之方法,所以首先要決定迴歸統計之 σ_{θ} 範圍。

(a)等密面之深度變化:

首先找出各梯次之最低σ_θ值,取其中最大之值,再進位到最近之 0.1σ_θ值(如:20.967kg/m³進位至 21.0 kg/m³),作為範圍之起點。σ_θ 範圍之最大值乃取 27.5 kg/m³,相當於 1200m 深度。在此以深之σ_θ 變化很小。而在表層的密度變化較大,因此在表層(0-200 公尺)以 每 0.2 kg/m³作為σ_θ之間隔,在中層(200 1200 公尺),以每 0.5 kg/m³ 為σ_θ間隔。然後,找出各σ_θ值在每個梯次所對應的深度及採樣時間。 由於下放時,CTD 探針較穩定,故採用下放的 CTD 數據進行此項工作。 (b)各**s_e格點之平均深度**:

圖 4-2 顯示某一σ_θ值對應之深度隨時間之變化。在對時間積分時,首先找出該密度對應深度中最淺的點當作基準點,計算兩梯次間

與基準值的差值(D、D2),再以採樣時間差(t)作梯形積分(圖 4-2)。

 $A_1 = (D_1 + D_2)^* t_1/2$

將該航次所有梯次計算所得之積分值作加總

 $A = A_1 + A_2 + A_3 +$

將加總值除以總時間,得到平均值再加上基準點深度(D₀)得到該密度 對應的平均深度值。

Average depth= D_0 + A/ T

(c)建立一個 Z-s。的關係:

將計算所得的平均深度(Z)對 σ_{θ} 作圖,並迴歸得一個多項式方程 式 Z= ?(σ_{θ})。

3.將 X-σ₀的關係轉換成 X-Z 的關係:

為得到某一參數 X (例:溫度、鹽度、營養鹽濃度)具代表性之 垂直剖面圖,乃利用 X- σ_{θ} 及 Z- σ_{θ} 關係求出 X-Z 的關係。若僅有單一 垂直剖面之參數 (如:營養鹽),則就每一標本找出原採樣梯次之該 深度對應的密度值 (由於採水是上收採樣,所以在此是利用上收之 CTD 測值來計算 σ_{θ}),再由 Z=?(σ_{θ})之迴歸方程式,求出對應之深度,即 得到一個具代表性的垂直剖面圖。若有多梯次之垂直剖面參數(如: 溫度),則在 σ_{θ} 迴歸範圍內,求取每 0.005 σ_{θ} 在各梯次對應之 X 參數值 (其方法見附錄四),再將各梯次之值加以平均得到該 σ_{θ} 值對應之平均 X 值之關係,再由 σ_{θ} -Z 之關係,得到 X-Z 之關係。

在最表層,密度小於σ_θ迴歸範圍最小值(通常在 18m 以淺),則直 接以該深度之 X 參數為準,若此深度有多梯次之數據就加以平均。在 深層由於溫鹽度之變化很小,故調整測值深度之必要性亦降低,1200 公尺以下,密度趨於定值(約 27.6kg/m³),難以區分等密面的差異, 所以直接使用同一深度數值平均。

4.4 結果

本研究從是利用海研一號 639 航次(2002 年 3 月 19 日到 4 月 2 日)、海研三號 794 航次(2002 年 6 月 30 到 7 月 4 日)、海研一號 656 航次(2002 年 8 月 31 日到 9 月 6 日),這三個航次在 SEATS 測站所採 集的樣品和 CTD 所採集的資料進行分析研究(表 4-2,4-3,4-4)。

4.4.1 CTD 資料

OR1-639 航次進行 30 個梯次的 CTD 測量,由溫度垂直剖面圖(圖 4-3a)觀之,溫度在表水的變化範圍為 26.32 26.73 ,平均為 26.41 £0.24 ,到 1000m 以深,變化趨於緩慢,到 3500m,溫度變化 很小,平均為 2.3724 £0.0006 。各梯次的變化由深度剖面圖很難看 出,故將各梯次 CTD 的溫度扣掉所有梯次溫度資料的平均值(Tag)對 深度作圖(圖 4-3b)。由圖觀之,溫度在表層變化可達到 £1.5 ,到

OR3-794 航次進行了 8 個梯次的 CTD 測量, 由溫度垂直剖面圖(圖 4-6)觀之, 溫度在表水的變化範圍為 30.23 30.73 , 平均為 30.51 £0.16 , 到 1300m 以深, 變化趨於緩慢, 到 3000m, 溫度變化 很小, 平均為 2.359 £0.004 。由 T-Taug之垂直剖面圖觀之, 溫度在 表層變化可達到 £2.0 , 到 1000m 的變化仍有 £0.4 , 到 2000m 以深 變化約 £0.02 。由鹽度垂直剖面圖(圖 4-7)觀之, 鹽度在表水的變 化範圍為 33.55psu 33.66psu, 平均為 33.63 £0.04psu, 在約 155m

OR1-656 航次進行 9 個梯次的 CTD 測量,由溫度垂直剖面圖(圖 4-9)觀之,溫度在表水的變化範圍為 29.27 29.48 ,平均為 29.38 £0.08 ,到 1500m 以深,變化趨於緩慢,到 3000m,溫度變化 很小,平均為 2.351 £0.002 。由 T-Tavg之垂直剖面圖觀之,溫度在 表層變化可達到 £1.5 ,到 1500m 的變化仍有 £0.2 ,到 2000m 以深 變化約 £0.026 。由鹽度垂直剖面圖(圖 4-10)觀之,鹽度在表水的 變化範圍為 33.65psu 33.66psu,平均為 33.66 £0.01psu,在約 140m 處,出現鹽度極大值(34.56psu),之後隨深度而鹽度減小,在約 395m 處,出現鹽度極小值(34.40psu)。之後鹽度隨深度增加而增加,至 1500m 鹽度變化趨緩,至 3000m,鹽度平均為 34.6087 £0.0008psu。

由 S-S_{avg}之垂直剖面圖觀之,在表層變化可達到 到.16psu,1000m 以 深變化約 到.002。由σ_θ垂直剖面圖(圖 4-11)觀之,密度隨深度而遞 增,σ_θ在表水的變化範圍為 20.90kg/m³ 20.97kg/m³,平均為 20.93 到.04kg/m³,到 1300m 以深,變化趨於緩慢,到 3000m,σ_θ變化極小, 平均為 27.6489 到.0006 kg/m³。由σ_θ-σ_{θavg}之垂直剖面圖觀之,在表 層變化可達到 到.8 kg/m³,1300m 以深變化約 到.004kg/m³。

4.4.2 溫鹽密度之高頻變化與平均剖面

比較三個航次固定深度的溫度變化幅度,其中 OR3-794 航次表層 的變化範圍較其他兩航次為大,變化延續的深度也較其他兩航次為 深。以o₀=22.1kg/m³之密度剖面為例(圖 4-12)其深度變化從 37m 到 55m,幅度可達 18m,因此取得一個具有代表性的剖面是很重要的。 本研究參考 HOT 計畫中等密面深度平均法,取得一個代表性密度對深 度的垂直分佈,方法在 4.3.2 有詳細說明。

經由密度面深度平均法求得的各航次之代表性 Z= ?(σ_θ)迴歸方 程式如下:

OR3-794

 $Z=0.2375^{*}\sigma_{\theta}^{6}-33.0646^{*}\sigma_{\theta}^{5}+1915.1597^{*}\sigma_{\theta}^{4}-59079.6219^{*}\sigma_{\theta}^{3}+102$ 3686.7140^{*}\sigma_{\theta}^{2}-9446110.9736^{*}\sigma_{\theta}+36263604.0406

OR1-639

 $Z=0.4386^*{\sigma_{\theta}}^6-62.8294^*{\sigma_{\theta}}^5+3748.5610^*{\sigma_{\theta}}^4-119221.4052^*{\sigma_{\theta}}^3+21$ 31775.3889^*{\sigma_{\theta}}^2-20318377.3672^*{\sigma_{\theta}}+80644385.5985 0R1-656

 $Z=0.2785^{*}\sigma_{\theta}^{\ 6}-38.9069^{*}\sigma_{\theta}^{\ 5}+2261.7252^{*}\sigma_{\theta}^{\ 4}-70021.8616^{*}\sigma_{\theta}^{\ 3}+121$ $7625.1948^{*}\sigma_{\theta}^{\ 2}-11275600.6200^{*}\sigma_{\theta}+43439726.2732$

將σ_θ-T_{avg}與σ_θ-S_{avg}的關係代入迴歸方程式 Z=?(σ_θ)的關係,則可 以得到三個航次溫度及鹽度的代表性剖面圖(圖 4-13)。從圖觀之, OR1-639 航次的代表性溫度剖面較 OR3-794 及 OR1-656 同一深度之溫 度都低,OR3-794 與 OR1-656 之溫度剖面則幾乎重疊,沒有太大的變 化,OR1-639 航次鹽度極大值出現的深度也較 OR3-794 與 OR1-656 淺, OR3-794 與 OR1-656 也幾乎相同,沒有太大的變化。

4.4.3 航次間之水文變化

由三個航次,各深度之溫度變化(T-Tavg)觀之,三月的航次表面 水溫之變化較小(±1.5),見圖 4-3b),在 1200m 以深,其變化幅度 已經很小;七月的航次(圖 4-6b),表水之溫度變化增大為±2.0), 其變化的幅度在 500m 時與三月相當,至 1000m 時,其變化幅度又增 大為±0.4),直到 2000m 以深,其變化幅度才減至極小;九月的航次 (圖 4-9b)之表水溫度變化為±1.5),與三月相似,但變化之幅度並

未隨深度而迅速變小,卻與七月相似,直至 1800m 以深才變得極小。 由這三個航次的各深度之溫度變化觀之,表示其高頻變化都不一致。 各深度之鹽度變化(S-Savg)與各深度之密度變化(σ_θ-σ_{θavg})也有類似的 現象,但其變化幅度不若溫度變化那麼明顯。表層水的溫度在三月 (26.4 ①.2)較七月(29.4)、九月(30.5)低很多,而且在七、九 月都發現表層之鹽度最低值出現在 20-30m,但三月則無此一現象。 在 2000m 以下,各航次間之水文特性差異很小,溫度變化在 0.02 以下,鹽度變化也在 0.02psu 左右。

4.4.4 磷酸鹽濃度剖面

OR1-639 航次一共進行 7 個梯次的海水標本採樣,磷酸鹽的分析 結果顯示於(圖 4-14a),表層濃度接近零,至 2000m 磷酸鹽增至 2.83 μM。OR3-794 航次一共進行 6 個梯次的海水標本採樣,由磷酸鹽的 垂直剖面圖(圖 4-14b)觀之,至 1400m 出現磷酸鹽增加至 2.85 μM。 OR1-656 航次一共進行 3 個梯次的海水標本採樣,由磷酸鹽的垂直剖 面圖(圖 4-14c)觀之,至 1400m 出現磷酸鹽增加至 2.78 μM。磷酸鹽 分析之誤差為 -0.05 μM,深層水中磷酸鹽之差異在誤差範圍之內。

圖 4-15 顯示 PO₄與 σ_{θ} 之關係, OR1-639 航次重複取樣造成的變 異,在 PO₄- σ_{θ} 圖中分佈較趨一致為得到代表性之 PO₄剖面,乃將 PO₄- σ_{θ} 的關係代入迴歸方程式 Z= ?(σ_{θ})的關係。以 OR3-794 航次中,第二

個梯次中原採樣深度為 200m 的標本為例,其對應的 σ_{θ} =25.58kg/m³, 經由迴歸方程式 Z=?(σ_{θ})則得到對應的深度為 183m,其原始採樣深 度與修正後之採樣深度相差 17m。用此方式將 σ_{θ} 迴歸範圍內的深度經 由 Z=?(σ_{θ})關係,得到每一個航次的磷酸鹽濃度代表性剖面(圖 4-16)。

修正前後之剖面的確有所不同,以 OR3-794 航次 0-200m 磷酸鹽 濃度為例(圖 4-17),可以看出修正前與修正後的比較。經過密度面 深度平均後的代表性磷酸鹽可以清楚的顯示磷酸鹽在 60m 以深開始 增加。其中,第二個梯次,採樣深度 80m 的磷酸鹽濃度,經過修正後, 該樣水標本的深度為 67m,使得在 80m 之濃度突跳,變得比較緩和, 整個磷酸鹽的垂直剖面趨勢也較修正前一致。

4.5 討論

將 OR1-639 航次上層 300m 之σ_θ對時間作等密線(圖 4-18a)在 82 小時之內等密線有許多的起伏,在 150-300m 之間有三次主要的振 盪,可能與全日潮有關,在 150m 以上則變化較為複雜。顯示造成振 盪之因素複雜。有此變化可知,確有必要以平均的方式來求得該航次 之代表性剖面,以除去高頻之變化,有利於航次與航次間之比較,進 而探討季節性之變化。 本研究乃利用 X-σ_θ及 Z-σ_θ之關係來求取 X-Z 之代表性剖面。利 用此一方式之主要原因是由於 X-σ_θ之關係較為穩定之故。圖 4-18b 顯示對應於σ_θ值之溫度的變化,除了 OR1-639 航次,其他兩航次之溫 度變化都很小。由 OR3-794 航次之 T-T_{avg}對σ_θ之關係圖(圖 4-18b), 可發現各密度面之溫度變化都在 £0.1 之內,大部分更在 £0.05 之 內。在固定σ_θ之溫度變化明顯的較固定深度之溫度變化之幅度小很多 (圖 4-6b),故利用密度來作為取得代表性剖面的因子。OR1-639 航次 觀測到各密度面之溫度變化較大,但大多都在 £0.3 之內,在σ_θ=24.6 以深,溫度變化都在 £0.1 以內,此航次中各密度面之溫度變化較 大,是反應了較複雜之水團變化,以下會進一步討論。

將三個航次所得的磷酸鹽濃度代表性剖面圖(圖 4-19)加以比 較。圖 4-19a 顯示在 1200m 以深, 三個航次所得到的深層水之磷酸鹽 濃度相當一致。在 1200m 以淺, 三月(OR1-639)的磷酸鹽濃度較七月 (OR3-794)、九月(OR1-656)為高,這變化對應於溫度的變化。1200m 以淺的溫度在三月較其他兩個航次為低,鹽度極大值出現的深度較其 他兩者為淺,且鹽度極大值較高。圖 4-20a 是此三航次之溫鹽圖,其 中三月航次之溫鹽特性較偏向西菲律賓海(Gong et al.,1992),顯示 主要受到黑潮入侵南海之影響(Shaw,1991)。由於黑潮水之入侵,水 團性質變化較大。因此,溫鹽曲線之分佈較寬(圖 4-20a),不若七月

及九月航次水團性質那樣一致。這也證明了為何同一密度面之溫度變 化較大(圖 4-18a)。由圖 4-20b 顯示,在上層海水中,同樣的溫度所 對應之磷酸鹽濃度也以三月份為最高。但黑潮水之營養鹽濃度並不 高,所以較高之磷酸鹽濃度由何而來值得討論。由圖 4-13a 可知,三 月份上層水溫度下降,密度之上下差異降低(圖 4-13c),有利於營養 鹽之向上擴散。因此,營養鹽隨之上升。但表層之冷卻及混合層之加 深卻難以達到較深之水層。圖 4-13a 顯示三月之水溫下降達到 500m。 因此,亦有可能此較冷之海水與菲律賓西北之冬季湧升作用有關 (Shaw et al.,1996)。此湧升水之營養鹽可能會向南海內部擴散,故 而影響到 SEATS 測站(Liu et al.,2002)。另一種可能的原因與渦漩 活動有關,由西菲律賓海向南海入侵之冷渦會將水團向上抬升(楊益, 個人通訊),同時也將高濃度的磷酸鹽濃度一併的向上湧升。

表層(0-150m)的磷酸鹽濃度的垂直剖面圖(圖4-19c)顯示三月的 磷酸鹽濃度從 50m 以深開始快速上昇,而七月及九月則在 65m 以深才 開始快速上昇。圖 4-21a 將上層 120m 之磷酸鹽分佈以對數尺度(log scale)畫出,以顯示更細微之變化。表水中三月之磷酸鹽濃度最高, 到了七月磷酸鹽濃度減到最低,可能是因為層化作用加強,深部之營 養鹽難以向上輸送,而被浮植消耗殆盡之故 將本研究的結果與Wu.et al.(2003)的結果(圖 4-21b)作比較,表層磷酸鹽隨季節性分佈的趨

勢大致相同。在三月份及七月份之濃度都相當一致,到了九月份,磷酸鹽濃度沒有再繼續下降。圖 4-13a 顯示九月之表層水溫度較七月略高。不過 4-13b 顯示九月表層鹽度低於七月。由溫鹽圖(圖 4-20)顯示,七月與九月之水團亦有些許之不同。九月之水團顯示南海內部之水團特性更強(Gong et al.,1992)。圖 4-20b 顯示,九月之上層海水中相同溫度對應之磷酸鹽濃度似較七月為高。

4.6 小結

- 本研究利用密度面深度平均法得到溫鹽密度及磷酸鹽之代表性深 度剖面,即以 X-σ_θ及 Z-σ_θ之關係來求取 X-Z 之代表性剖面。利用 此一方式之主要原因是由於 X-σ_θ之關係較為穩定之故。在固定σ_θ 之溫度變化明顯的較固定深度之溫度變化之幅度小很多,故利用密 度來作為取得代表性剖面的因子。
- 2.2002年七月的航次,表層溫度的變化幅度(*2*)較其他兩航次為大,變化延續的深度(至 2000m)也較其他兩航次為深,鹽度與密度的變化也有類似的現象。經由密度面深度平均法求得之溫度及鹽度 代表性剖面顯示三月之上層水體(1200m 以淺)之水溫最低;七月與 九月之水溫近乎一致,但九月表層水溫度較七月略高,不過九月表 層鹽度低於七月。此之變化可能是受到夏季在越南外海之湧升作用

之影響,鹽度最低之中層水向上湧升,即可能造成上層水體之鹽度 下降,進而使營養鹽也上升。

3.將三個航次所得的磷酸鹽濃度代表性剖面加以比較。在 1200m 以 深,三個航次所得到的深層水之磷酸鹽濃度相當一致。在 1200m 以 淺,三月(OR1-639)的磷酸鹽濃度較七月(OR3-794),九月(OR1-656) 為高,這變化對應於溫度的變化。表層(0-150m)的磷酸鹽濃度的顯 示三月的磷酸鹽濃度從 50m 以深開始快速上昇,而七月及九月則在 65m 以深才開始快速上昇。最表層顯示三月之磷酸鹽濃度最高,濃 度達到 34nM,到了七月磷酸鹽濃度減到最低,濃度達到 6nM。

第五章 結論

- 1.本研究利用"鎂引發的共沉澱法"(MAGnesium-Induced Coprecipitation(MAGIC)),濃縮海水中的磷酸鹽以測定低濃度 的磷酸鹽,其吸光值是以10cm光徑的光槽在波長880nm測定。本 研究特別注意背景值(Blank)的測定,是利用過濾過的南海表層 海水當作基質,使用MAGIC方法在第一次共沈澱後取其離心後的上 層液,經由同樣的方法經過再次共沈澱的濃度值。
- 2.自 2002年11月到 2003年1月進行的五次低濃度磷酸鹽分析之背 景吸光值在 0.007-0.009之間,換算濃度為 5-7nM。檢量線之斜率 都在 1.13-1.21*10⁻³/nM 之間,平均為(1.17 £0.03)*10⁻³/nM,其 值頗為穩定。其換算的莫爾吸光係數約為 22700/M/cm,與磷酸鹽 測定之經驗莫爾吸光係數 22400/M/cm 相近。偵測極限是以零添加 吸光值的標準偏差所對應之濃度的三倍來計算,本研究著偵測極限 為 1.5nM。若以分光光度計之解析極限 0.001為基準,則偵測極限 為 2.5nM。
- 3.2003年3月在近岸(紅柴溝)的時間序列研究,涵蓋兩個潮汐週期。磷酸鹽濃度在表層皆呈現低值,磷酸鹽濃度於溫躍層開始明顯增加,在底水達到最高,其最大濃度變化從0.8µM到1.5µM。100m以淺的海水,利用 MAGIC 方法分析,測定低濃度之磷酸鹽變化,結

果顯示磷酸鹽濃度有明顯之變化,其變化幅度 10 50nM。

- 4.由屏東蟳廣嘴潮位站(21 59 'N, 120 42 'E)之潮位變化得知,紅 柴溝在退潮時,底層的磷酸鹽濃度變高,並且向上抬升,推測是因 沿岸海水向東南流,此時表層高溫海水退出紅柴溝而深層海水自下 層向上補入,造成低溫高鹽高密度的水向上抬昇。漲潮時,台灣西 南沿海之海水向西北流,此時高溫低鹽的水在表層累積呈現較厚的 一層,而底層低溫、高密度之水退出紅柴溝。
- 5.表層磷酸鹽被吸收所造成的欠缺(decifit, PO4)隨著日夜時間而 有所變化,在下午2點時 PO4達到最高,表示磷酸鹽被吸收的最 多,而葉綠素也達到最高值。 PO4與Chl-a有良好的正相關 (R²=0.73)。由此推論,紅柴溝之潮汐作用會將營養鹽向上層補 充,經由垂直混合作用,使營養鹽進入有光層,進而強化浮游植物 之生長。
- 6.2002 年 3 月、7 月及 9 月在 SEATS 測站的探測得到之 CTD 資料,經 由密度面深度平均法求得各航次之代表性 Z=?(σ_θ)迴歸方程式,再 以 X-σ_θ及 Z-σ_θ之關係來求取 X-Z 之代表性剖面。得到溫鹽密度及 磷酸鹽之代表性深度剖面。
- 2002年七月的航次,表層溫度的變化幅度較其他兩航次為大,變
 化延續的深度也較其他兩航次為深,鹽度與密度的變化也有類似的

現象。經由密度面深度平均法求得之溫度及鹽度代表性剖面顯示三 月之上層水體(1200m 以淺)之水溫最低;七月與九月之水溫近乎一 致,但九月表層水溫度較七月略高,不過九月表層鹽度低於七月。 8.將三個航次所得的磷酸鹽濃度代表性剖面加以比較。在1200m 以 深,三個航次所得到的深層水之磷酸鹽濃度相當一致。在1200m 以淺,三月的磷酸鹽濃度較七月、九月為高,這變化對應於溫度 的變化。表層(0-150m)的磷酸鹽濃度的顯示三月的磷酸鹽濃度從 50m 以深開始快速上昇,而七月及九月則在65m 以深才開始快速 上昇。最表層顯示三月之磷酸鹽濃度最高,濃度高達34nM,到了 七月磷酸鹽濃度減到最低,濃度低到6nM。

參考文獻

- Butler, E.I., Knox, S. and Liddicoat, M.I. (1979) The relationship between inorganic and organic nutrients in sea water. J.Mar.Biol.Ass.U.K.59: 239-250.
- Codispoti,L.A.,1989.Phosphorus vs. nitrogen limitation of new and export production.In:W.H.Berger,V.S.Smetaeck and G.Wefer(Editors),Productivity of the Ocean:Present and Pass.Wiley,New York,NY,377-394.
- Chao, S.Y., Shaw, P.T., Wu, S.Y., (1996a) Deep water ventilation in the South China Sea. Deep-Sea Research ., 43: 445-466.
- Chiswell,S.,E.Firing,D.Karl,R.Lukas,and C.Winn.(1990) Hawaii ocean time-series program,data report 1, 1988-1989.SOEST Tech.Rep.1.
- Dore, J.E. and Karl, D.M. (1996) Nutrite distributions and dynamics at Station ALOHA. Deep-Sea Research .,43:385-402
- Dore, J.E., Houlihan, T., Hebel, D.V., Tien, G., Tupas, L. and Karl, D.M. (1996) Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater. Mar. Chem., 53:173-185.

- Fernandez, J.A., Niell, F.X., and Lucena, J. (1985) Arepid and sensitive automated determination of phosphate in nature water.Limnol.Oceanogr.30(1):227-230.
- Gong,G.-C., K.K.Liu.,C.T.Liu.,and S.C.Pai.(1992) The Chemical Hydrography of the South China Sea West of Luzon and a Comparison with the West Philippine Sea.TAO 3(4):587-602.
- Harrison, W.G., and Harris, L.R. (1986) Isotopedilution and its effects on measurements of nitrogen and phosphorus uptake by oceanic microplankton.Mar.Ecol.Prog.Ser.27:253-261.
- Herbland, A. (1984) Phosphate uptake in the euphotic layer of the equatorial Atlantic Ocean. Methodological observations and ecological significance. Oceanogr. Trop. 19:25-40.
- Hung,T.C.,Tsai,C.C.H. and Chou,P.Y.(1983)Study on OTEC resources and ecological environments along the Hung-Tsai coastal area.Acta Oceanogr.Taiwanica,14:64-74.
- Johnson, D.L. (1971) Simultaneous determination of arsenate and phosphate in nature waters.Environ.Sci.Technol.5:411-414. Karl, D.M. and Tien.G. (1992) MAGIC: A sensitive and precise

method for measuring dissolved phosphorus in aquatic

environments.Limnol.Oceanogr., 37: 105-116

- Karl, D.M., Letelier, R.M., Hebel, D.V., Bird, D.F. and Winn, C.D., (1992) Trichodesmium blooms and new nitrogen in the North Pacific gyre. In: E.J. Carpenter, D.G. Capone and J.G.Rueter(Editors), Marine Pelagic Cyanobacteria : Trichodesmin and Other Diazotrophs.Kluwer, Dordrecht, pp:219-237.
- Karl,D.M.,Letelier,R.M.,Hebel,D.V.,Dore,J.E.,Christian,J., Tupas,L.M.,andWinn,C.,(1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991-92 El Nino.Nature(London),373: 230-234.
- Karl,D.M.and Michaels,A.F.(1996)Preface : The Hawaiian Ocean Time-series(HOT) and Bermuda Atlantic Time-series Study(BATS).Deep-Sea Research ...,43:127-129
- Karl,D.M.and Lukas,R. (1996) The Hawaii Ocean Time-series (HOT)
 program : Background, rationale and field implementation.
 Deep-Sea Research ...,43:129-156
- Karl, D.M. and Katsumi Yanahi. (1997) Partial characterization of the dissolved organic phosphorus pool in the oligotrophic

North Pacific Ocean. Limnol.Oceanogr., 42: 1398-1405.

- Karl,D.M.and Tien.G.(1997) Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean. Mar.Chem., 56:77-196.
- Karl,D.M.,Bjorkman,K.M.,Dore,J.E.,Fujieki,L.,Hebel,D.V.,Hou lihan,T.,Letelier,R.M.,and Tupas,L.M.(2001)Ecological nitrogen-to-phosohorus stoichiometry at station ALOHA. Deep-Sea Research .,48:1529-1566.
- Liu,K.-K.,S.-Y.Chao.,P.-T.Shaw.,G.-C.Gong.,C.-C.Chen.,T.-Y. Tang.(2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research .,49:1387-1412.
- Morse, J.W., Hunt, M., Zullig, J., Mucci, A. and Mendez, T. (1982) A comparison of technique for preserving dissolved nutrients in open ocean seawater samples. Ocean Sci.Eng., 7:75-106.
- Murphy,J.,and J.P.Riley.(1962) A modified single solution method for the determination of phosphate in natural waters.Anal.Chim.Acta 27:31-36

Orrett,K., and Karl,D.M. (1987) Dissolved organic phosphorus

production in surface seawaters.Limnol.Oceanogr.32:383-395

- Pai,S.-C.,C.-C.Yang, and J.P.Riley.(1990) Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Anal.Chim. Acta 229:115-120.
- Pai,S.C.,and Chen,H.Y.(1994).Vertical distribution of cadminum in marginal seas of the western Pacific Ocean.Marine Chemistry 47,81-91.
- Parsons, T.R., Y. Maita and C.M. Lalli. (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press.
- Perry,M.J., and Eppley,R.W.(1981) Phosphate uptake by phytoplankton in the central North Pacific Ocean.Deep-Sea Res.28:39-49.
- Redfield,A.C.,Ketchum,B.H.,Richards,F.A.,(1963)The influence of organisms on the compositions of sea-water.In: Hill,M.N.(Ed.),The Sea,Vol.2.Interscience Publishers,New York,pp.26-77.
- Riley, J.P. and Chester, R. (1971) "Chemical Oceanography" vol.8, 172. London : Academic Press.

- Shaw, P.T., (1991) The seasonal variation of the intrusion of the Philippine sea water into the South China Sea.J.Geophys.Res., 96:821-827
- Shaw,P.T.,Chao,S.-Y.,Liu,K.-K.,Pai,S.-C.,Liu,C.-T.,(1996)
 Winter upwelling off Luzon in the north-eastern South China
 Sea. J.Geophys.Res.,101:16435-16448.
- Shiah, F.K., K.K.Liu and C.Y.Tang. (1999) The south east asia time-series study (SEATS). US-JGOFS Newsletter: 8-9.
- Smith,S.V.,Kimmerer,W.J. and Walsh,T.W., (1986)Vertical flux and biogeochemical turnover regulate nutrient limitation of net organic production in the North Pacific gyre.Limnol.Oceanogr.31:161-167.
- Stephens,K.(1963) Determination of low phosphate concentrations in lake and marine waters.Limnol.Oceanogr.8, 361-362.
- Strickland,J.D.H.,and T.R.Parsons.(1972) A practical handbook
 of seawater analysis,2nd ed. Bull.Fish.Res.Bd.Can.167
 Sorokin,Y.I.(1985) Phosphorus metabolism in planktonic
 communities of the eastern tropical Pacific

Ocean.Mar.Ecol.Prog.Ser.27:87-97.

- Thomson-Bulldis and Karl,D.M.(1887) Application of a novel method for phosphorus determinations in the oligotrophic North Pacific Ocean. Limnol.Oceanogr.,43:1565-1577.
- Wiebe, P.H., C.B.Millar, J.A.Mcgowan, and R.A.Knox. (1987) Long time series study of oceanic ecosystems. EOA. Transactions of the American Geophysical Union, 68, 1178-1190.
- Wong, T.F., Chung, S.W., Shiah, F.K., Chen, C.C., Wen, L.S., and Liu, K.K. (2002) Nitrate anomaly in the upper nutricline in the northern South China Sea - Evidence for nitrogen fixation.Geophysical Research Letters 29.
- Wu,J.,W.Sunda.,E.A.Boyle,and D.M.Karl.,(2000) Phosphate depletion in the Western North Atlantic Ocean,Science, 289,759-762.
- Wu,J.F, Chung,S.-W.,Wen,L.-S.,Liu,K.-K.,Chen,Y.-L.L.,Chen,
 H.-Y.,Karl,D.M. (2003) Dissolved inorganic phosphate,
 dissolved iron and Trichodesmium in the oligotrophic South
 China Sea. Global Biogeochem. Cycle 17(1), 1008,
 doi:10.1029/2002GB001924, 2003.

- Y.J.Yang., T.Y.Tang, M.H.Chuang, A.K.Liu, M.-K and S.R.Ramp.,
 - (2003) Soliton Northeast of Tung-Sha Island, Pilot study of ASIAEX.
- 徐俊鳴.(1978)我國南海諸島的自然地理概要.海洋文選.2:63-66
- 夏復國.(1998)海洋時間序列研究.科學發展月刊.26(10):1287-1290
- 陳鎮東.(2002) 南海海洋學
- 陸澍華 等.(1997) CTD Seasoft 軟體操作中文手冊
- 詹森.(1998)台灣西南沿海潮汐特徵之再探.海洋科學學門研究成果論文摘要集.236-239
- 張明輝.(2001)南海內孤立子的研究.國立台灣大學海洋研究所碩士

論文

- 謝以萱.(1981) 南海的海底地形輪廓.南海海洋科學集刊.2.1-11
- 鍾仕偉 等.(1998)以塑膠容器保存海水中營養鹽的探討.海洋科學學

門研究成果論文摘要集.84-86

鍾仕偉 等.(1999)南海時間序列研究水文與營養鹽測定和儲存方法

之探討.海洋科學學門研究成果論文摘要集.225-227

添加之磷酸鹽濃度(nM)	原始吸光值			修正後之吸光值			
	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank	0.007	0.007	0.008				0.007 ±0.0006
0	0.018	0.018	0.017	0.011	0.011	0.010	0.010 ±0.0006
42.1	0.064	0.065	0.064	0.057	0.058	0.057	0.057 ±0.0006
84.2	0.113	0.114	0.113	0.106	0.107	0.106	0.106 ±0.0006
126.3	0.163	0.163	0.164	0.156	0.156	0.157	0.156 ±0.0006

表 2-1.2002.11.06 零添加及標準添加三重覆之吸光值

迴歸結果? y=1.15*10⁻³x+0.010? R²=0.9997

Dete		R^2	背景吸光值		零添加之原始	零添加之修正	對應濃度(nM)	
Dale	赤 イギ (1/1111)		(Abs.)	到應濃度(NM)	吸光值(Abs.)	吸光值(Abs.)		
2002.08.07	1.195E -03	0.9997	-	-	0.018	0.010 ^b	8.65	
2002.09.18	1.198E -03	0.9992	-	-	0.020	0.012 ^b	10.30	
2002.09.30	1.185E -03	0.9997	-	-	0.019	0.011 ^b	9.56	
2002.10.08	1.207E -03	0.9999	-	-	0.016	0.008 ^b	6.91	
2002.10.23	1.152E -03	0.9989	-	-	0.018	0.010 ^b	8.39	
2002.11.06	1.154E -03	0.9998	0.007	6.1	0.018	0.011	9.24	
2002.11.20	1.144E -03	1.0000	0.007	6.1	0.019	0.012	10.78	
2002.12.09	1.150E -03	0.9998	0.008	7.0	0.017	0.009	8.11	
2002.12.21	1.150E -03	0.9999	0.007	6.1	0.018	0.011	9.27	
2003.01.23	1.131E -03	0.9996	0.009	6.7	0.020	0.011	9.43	

表 2-2.檢量線之斜率? 背景吸光值及對應濃度? 零添加修正吸光值及對應濃度

註? a.對應濃度=吸光值/莫爾吸光係數

b.背景吸光值之修正乃以 2002 年 11 月至 2003 年 1 月之平均值作修正
表 3-1.2003.04.18 零添加	n及標準添加三重覆之吸光值
----------------------	---------------

添加之磷酸鹽濃度		吸光值		
(µM)	Abs1	Abs2	Abs3	Avg
0.00	0.000	0.000	0.000	0.000
1.05	0.018	0.018	0.019	0.018 ±0.0006
2.11	0.039	0.040	0.040	0.040 <u>+</u> 0.0006
4.21	0.082	0.082	0.083	0.082 ±0.0006

表 3-2.OR1-676 化學水文探測工作表

Cast	Date	Time	工作項目
1	3月18日	15:08:07	CTD
2	3月18日	16:29:03	CTD
3	3月18日	18:06:09	CTD
4	3月18日	19:51:39	CTD & Sampling
5	3月18日	22:34:57	CTD
6	3月19日	00:06:58	CTD
7	3月19日	01:29:26	CTD & Sampling
8	3月19日	05:53:07	CTD
9	3月19日	07:28:23	CTD & Sampling
10	3月19日	09:52:58	CTD
11	3月19日	13:01:59	CTD
12	3月19日	14:08:07	CTD & Sampling
13	3月19日	16:31:23	CTD
14	3月19日	18:13:22	CTD

Cast	1	2	3	4	5	6	7	8	9	12	13
Time(hr)	0	3.25	6	9	12	15	18	21	24	33	36
Depth(m)					2	10					
		10	20	40	60	20					
		80	100	125	150	40					
		200	250	300	350	60					
		400	500	600		80					
	700	800	900			100					
				1000							
					1200						
		1400	1600	1800							
					2000						
	2200										
	2400										
	2600										
	2800										
	3000										

表 4-1.SEATS 測站樣水深度及梯次安排(供採水人員參考)

表 4-2.OR1-639	化學水文探測工作表
---------------	-----------

RV	Cruise	Station	Cast	Lon.	Lat.	Date	Time(start)	Time(end)	工作項目
OR1	639	KK1	1	115.58	18.25	2002/3/25	03:39	07:55	CTD
OR1	639	KK1	2	115.58	18.25	2002/3/25	09:13	09:53	CTD
OR1	639	KK1	3	115.58	18.25	2002/3/25	10:53	14:38	CTD & Sampling
OR1	639	KK1	4	115.58	18.25	2002/3/25	15:50	19:01	CTD
OR1	639	KK1	5	115.58	18.25	2002/3/25	20:12	23:40	CTD & Sampling
OR1	639	KK1	6	115.57	18.26	2002/3/26	00:58	01:20	CTD
OR1	639	KK1	7	115.57	18.26	2002/3/26	02:05	05:37	CTD & Sampling
OR1	639	KK1	8	115.58	18.25	2002/3/26	06:49	07:45	CTD
OR1	639	KK1	9	115.57	18.26	2002/3/26	10:49	11:30	CTD
OR1	639	KK1	10	115.60	18.33	2002/3/26	13:43	14:02	CTD
OR1	639	KK1-1	1	115.67	18.33	2002/3/26	15:05	18:21	CTD & Sampling
OR1	639	KK1-1	2	115.67	18.33	2002/3/26	19:14	19:39	CTD
OR1	639	KK1-1	3	115.67	18.33	2002/3/26	20:33	00:02	CTD & Sampling
OR1	639	KK1-1	4	115.66	18.33	2002/3/27	01:15	02:02	CTD
OR1	639	KK1-1	5	115.67	18.33	2002/3/27	03:05	03:24	CTD
OR1	639	KK1-1	6	115.67	18.33	2002/3/27	04:04	07:42	CTD & Sampling
OR1	639	KK1-1	7	115.67	18.33	2002/3/27	09:01	12:26	CTD & Sampling
OR1	639	KK1-1	8	115.67	18.34	2002/3/27	13:23	13:53	CTD
OR1	639	KK1-1	9	115.67	18.34	2002/3/27	14:46	15:20	CTD
OR1	639	KK1-1	10	115.67	18.33	2002/3/27	16:18	16:41	CTD
OR1	639	KK1-1	11	115.67	18.33	2002/3/27	17:39	21:19	CTD & Sampling
OR1	639	KK1-1	12	115.67	18.33	2002/3/27	22:12	22:59	CTD
OR1	639	KK1-1	13	115.67	18.33	2002/3/27	23:38	23:58	CTD
OR1	639	KK1-1	14	115.66	18.33	2002/3/28	04:53	05:14	CTD
OR1	639	KK1-1	15	115.66	18.34	2002/3/28	05:49	06:25	CTD
OR1	639	KK1-1	16	115.67	18.34	2002/3/28	07:01	10:38	CTD
OR1	639	KK1-1	17	115.67	18.34	2002/3/28	12:17	12:34	CTD
OR1	639	KK1-1	18	115.67	18.33	2002/3/28	13:39	14:07	CTD
OR1	639	KK1-1	19	115.67	18.33	2002/3/28	14:40	14:58	CTD
OR1	639	KK1-1	20	115.67	18.34	2002/3/28	15:47	16:15	CTD

RV	Cruise	Station	Cast	Lon.	Lat.	Date	Time(start)	Time(end)	工作項目
OR3	794	KK1	1	115.59	18.25	2002/7/2	07:25	10:45	CTD & Sampling
OR3	794	KK1	2	115.59	18.25	2002/7/2	11:28	14:15	CTD & Sampling
OR3	794	KK1	3	115.59	18.25	2002/7/2	14:54	17:10	CTD & Sampling
OR3	794	KK1	4	115.59	18.25	2002/7/2	17:51	20:33	CTD & Sampling
OR3	794	KK1	5	115.58	18.25	2002/7/2	21:06	23:05	CTD & Sampling
OR3	794	KK1	6	115.58	18.25	2002/7/2	23:45	23:45	CTD
OR3	794	KK1	7	115.55	18.29	2002/7/3	00:18	03:20	CTD & Sampling
OR3	794	KK1	8	115.58	18.33	2002/7/3	03:58	05:55	CTD

表 4-3.OR3-794 化學水文探測工作表

表 4-4.OR1-656 化學水文探測工作表

RV	Cruise	Station	Cast	Lon.	Lat.	Date	Time(start)	Time(end)	工作項目
OR1	656	KK1	1	115.42	18.34	2002/9/3	13:40	16:10	CTD
OR1	656	KK1	2	115.42	18.34	2002/9/3	16:23	19:20	CTD & Sampling
OR1	656	KK1	3	115.42	18.34	2002/9/3	20:11	21:31	CTD & Sampling
OR1	656	KK1	4	115.42	18.34	2002/9/3	22:09	00:31	CTD
OR1	656	KK1	5	115.42	18.34	2002/9/4	02:06	04:34	CTD
OR1	656	KK1	6	115.41	18.34	2002/9/4	05:55	07:01	CTD & Sampling
OR1	656	KK1	7	115.42	18.34	2002/9/4	08:32	10:50	CTD
OR1	656	KK1	8	115.42	18.34	2002/9/4	12:05	14:07	CTD
OR1	656	KK1	9	115.42	18.34	2002/9/4	16:02	18:00	CTD

圖 1-1. 磷酸鹽? 硝酸鹽和矽酸鹽在大西洋? 太平洋? 印度洋中濃度

的垂直分佈圖

圖 1-2.台灣附近海域之磷酸鹽垂直分佈圖(Pai and Chen 1994):A.東

海 B.南海 C.西菲律賓海

圖 1-3. 海洋中磷酸鹽的循環示意圖

圖 2-1.低濃度磷酸鹽測定流程圖

圖 2-2.2002.11.06 以海水為基質之不同磷酸鹽添加濃度檢量線

(R²=0.9997)

圖 3-1.紅柴溝採樣測站? 120 ¤1 E 21 58 №? 位置圖(—? 漲潮方 向? --->? 退潮方向? +? 為蟳廣嘴潮位站)

圖 3-2.以海水為基質之不同磷酸鹽添加濃度檢量線(R²=0.9990)

圖 3-3.3 月 18 日 15:00 至 3 月 19 日 18:00 紅柴溝變化圖(由上至下 依序為 a.潮汐 b.密度 c.鹽度 d.溫度? 營養鹽採樣的 Cast 為 4? 7? 9? 12)?

圖 3-6.3 月 18 日 15:00 至 3 月 19 日 18:00 紅柴溝變化圖(由上至下 依序為 a.潮汐 b.溫度 c.螢光值 (營養鹽採樣的 Cast 為 4? 7? 9? 12)?

19:50? Cast 7 01:30? Cast 9 07:30? Cast 12 14:00)?

圖 3-8. OR1-676 航次溫鹽圖

圖 3-9.a.磷酸鹽濃度對密度關係圖 b.磷酸鹽濃度對溫度關係圖 (:19:50、 :01:30、 :07:30、 :14:00)。

圖 3-10.a.溫鹽圖 b.磷酸鹽濃度對溫度關係圖?(? 19:50??? 01:30??? 07:30??? 14:00)圖中直線為假設混合曲線? PO4 為磷酸鹽濃度與假想混合曲線間的水平差距?

圖 3-11.a. PO4與時間關係圖 b.葉綠素與時間關係圖

圖 3-12. PO4 對葉綠素關係圖

圖 4-1.南海海域地形圖

Time

圖 4-2.σθ對應時間序列的深度變化之積分示意圖

圖 4-3.OR1-639(2002.3) (a)溫度(T)對深度剖面圖 (b)溫度(T-Tavg)對深度剖面圖

圖 4-4.OR1-639(2002.3) (a)鹽度(S)對深度剖面圖 (b)鹽度(S-Savg)對深度剖面圖

圖 4-5.OR1-639(2002.3) (a)σ_θ對深度剖面圖 (b)σ_θ-σ_{θavg} 對深度剖面圖

圖 4-6.OR3-794(2002.7) (a)溫度(T)對深度剖面圖 (b)溫度(T-Tavg)對深度剖面圖

圖 4-7.OR3-794(2002.7) (a)鹽度(S)對深度剖面圖 (b)鹽度(S-Savg)對深度剖面圖

圖 4-8.OR3-794(2002.7) (a)σ_θ對深度剖面圖 (b)σ_θ-σ_{θavg} 對深度剖面圖

圖 4-9.OR1-656(2002.9) (a)溫度(T)對深度剖面圖 (b)溫度(T-Tavg)對深度剖面圖

圖 4-10.OR1-656(2002.9) (a)鹽度(S)對深度剖面圖 (b)鹽度(S-Savg)對深度剖面圖

圖 4-11.OR1-656(2002.9) (a)σ_θ對深度剖面圖 (b) σ_θ-σ_{θavg} 對深度剖面圖

圖 4-12. OR3-794 航次 σ_{θ} =22.1 kg/m³時深度的時序變化圖

圖 4-13. (a)代表性溫度的垂直剖面圖 (b)代表性鹽度的垂直剖面圖 (c)代表性密度的垂直剖面圖

圖 4-14.原始磷酸鹽垂直剖面圖(a)OR1-639 (b)OR3-794 (c)OR1-656

圖 4-15.磷酸鹽對σ_θ關係圖(a)OR1-639 (b)OR3-794 (c)OR1-656

圖 4-16.代表性磷酸鹽垂直剖面圖 (a)OR1-639 (b)OR3-794 (c)OR1-656

圖 4-17. OR3-794 0-200m (a)磷酸鹽垂直剖面圖 (b)代表性磷酸鹽垂直剖面圖

圖 4-18(a).OR1-639 航次上層 300m 之σ_θ對時間 contour

圖 4-18(b).a.OR1-639 航次 b.OR3-794 航次 c.OR1-656 航次溫度(T-Tavg)對σθ剖面圖

圖 4-19.代表性磷酸鹽的垂直剖面圖(a)0-4000m (b)0-1200m (c)0-150

圖 4-20.(a)三個航次之溫鹽圖 (b)溫度與對數尺度磷酸鹽濃度關係圖

圖 4-21. (a)對數尺度之磷酸鹽分佈圖 (b)Wu.et al.(2003)對數尺度之磷酸鹽分佈圖

附錄一 定容容器之標定

- A1.1 定容瓶之標定
- 器材:定容瓶(250mL、1000mL)
- 步驟:1.準備蒸餾水、溫度計及漏斗。
 - 2.以溫度計量取蒸餾水溫度(T)。
 - 3. 將定容瓶以蒸餾水清洗乾淨後,在陰涼處陰乾。
 - 4. 將天平歸零。
 - 5.將空定容瓶放到分析天平上,秤取未裝蒸餾水前的空瓶子重 為 W。
 - 6.將定容瓶暫時拿離開天平。
 - 7.將蒸餾水小心到入定容瓶中至水位添加到定容瓶上之刻線 為止,不可讓水溢到瓶子外面或天平上,水位突出端對其定 容瓶的刻線。
 - 8.再將已裝好蒸餾水的定容瓶放回天平上,秤取重量為 Wa。
 - 9.定容瓶體積為(V mL)
 - $V = (W_2 W_1) / D(T) = W^* V(T)$
 - D(T):溫度 T時的蒸餾水密度
 - V(T):一克水之體積

10.反覆作5次。

A1.2 定容吸管之標定

器材:定容吸管(2mL、4mL、6mL)

- 步驟:1.先準備好一杯蒸餾水、一空燒杯、溫度計
 - 2.以溫度計量取蒸餾水的溫度(T)
 - 3. 將空燒杯放到分析天平上並且歸零
 - 4. 將吸管放入蒸餾水的容器內,吸取定量體積之蒸餾水,將吸

管內的水打入放在天平上的空燒杯中,然後記下天平秤重

(₩)₀

5.吸管定容體積為(VmL)

 $V = W/D(T) = W^*V(T)$

6.反覆作5次。

結果:

1. 定容瓶之標定

METTLER TOLEDO GG40	002-S	Max:4100g d=0.01g
蒸餾水溫度:23	密度(g/cm ³):	1.0034

標示體積(cm ³)	空重(g)	總重(g)	淨重(g)	定容體積(cm³)	平均定容體積(cm³)	SD
250	47.93	297.64	249.71	250.56		
250	47.92	297.63	249.71	250.56		
250	47.93	297.63	249.70	250.55	250.56	0.00
250	47.93	297.64	249.71	250.56		
250	47.93	297.64	249.71	250.56		

METTLER TOLEDO GG4002-S

蒸餾水溫度:23

Max:4100g d=0.01g

標示體積(cm ³)	空重(g)	總重(g)	淨重(g)	定容體積(cm³)	平均定容體積(cm³)	SD
1000	86.65	1083.71	997.06	1000.45		
1000	86.64	1083.71	997.07	1000.46		
1000	86.65	1083.70	997.05	1000.44	1000.45	0.01
1000	86.65	1083.71	997.06	1000.45		
1000	86.65	1083.71	997.06	1000.45		

密度(g/cm³): 1.0034

定量吸管之標定

METTLER TOLEDO AG204			Max:210g d=0.1mg
蒸餾水溫度:23	密度(g/cm ³):	1.0034	

標示體積(cm ³)	空重(g)	總重(g)	淨重(g)	定容體積(cm³)	平均定容體積(cm ^³)	SD
2	9.4915	11.4846	1.9931	1.9999		
2	9.4913	11.4843	1.993	1.9998		
2	9.4914	11.4847	1.9933	2.0001	1.9998	0.000
2	9.4912	11.4844	1.9932	2.0000		
2	9.4914	11.4840	1.9926	1.9994		

METTLER TOLEDO AG204

蒸餾水溫度:23

```
密度(g/cm<sup>3</sup>): 1.0034
```

Max:210g d=0.1mg

標示體積(cm ³)	空重(g)	總重(g)	淨重(g)	定容體積(cm³)	平均定容體積(cm³)	SD
4	9.4913	13.4777	3.9864	4.0000		
4	9.4915	13.4771	3.9856	3.9992		
4	9.4912	13.4775	3.9863	3.9999	3.9995	0.000
4	9.4913	13.4772	3.9859	3.9995		
4	9.4914	13.4771	3.9857	3.9993		

METTLER TOLEDO AG204

蒸餾水溫度:23

Max:210g d=0.1mg

標示體積(cm ³)	空重(g)	總重(g)	淨重(g)	定容體積(cm³)	平均定容體積(cm ^³)	SD
6	9.4913	15.4740	5.9827	6.0030		
6	9.4912	15.4709	5.9797	6.0000		
6	9.4915	15.4709	5.9794	5.9997	6.0004	0.002
6	9.4913	15.4703	5.9790	5.9993		
6	9.4914	15.4708	5.9794	5.9997		

密度(g/cm³): 1.0034

附錄二 各次 MAGIC 測定之檢量線數據

2002.08.07

添加之磷酸鹽	原始吸光值			修			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank							0.008
0	0.018	0.019	0.018	0.010	0.011	0.010	0.010
42.1	0.067	0.067	0.068	0.059	0.059	0.060	0.059
84.2	0.120	0.120	0.121	0.112	0.112	0.113	0.112
126.3	0.169	0.168	0.168	0.161	0.160	0.160	0.160

迴歸結果? y=1.19*10⁻³x+0.011? R²=0.9997

2002.09.18

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank							0.008
0	0.02	0.021	0.02	0.012	0.013	0.012	0.012
42.1	0.069	0.071	0.069	0.061	0.063	0.061	0.062
84.2	0.123	0.125	0.124	0.115	0.117	0.116	0.116
126.3	0.171	0.170	0.170	0.163	0.162	0.162	0.162

迴歸結果? y=1.20*10⁻³x+0.011? R²=0.9992

2002.09.30

添加之磷酸鹽	原始吸光值			修			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank							0.008
0	0.019	0.02	0.019	0.011	0.012	0.011	0.011
42.1	0.068	0.069	0.069	0.060	0.061	0.061	0.061
84.2	0.121	0.120	0.121	0.113	0.112	0.113	0.113
126.3	0.169	0.168	0.168	0.161	0.160	0.160	0.160

迴歸結果? y=1.19*10⁻³x+0.011? R²=0.9997

20	02	.10	.08

添加之磷酸鹽	原始吸光值			修			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank							0.008
0	0.016	0.017	0.016	0.008	0.009	0.008	0.008
42.1	0.067	0.065	0.064	0.059	0.057	0.056	0.057
84.2	0.117	0.118	0.117	0.109	0.110	0.109	0.109
126.3	0.168	0.169	0.168	0.160	0.161	0.160	0.160

迴歸結果? y=1.12*10⁻³x+0.011? R²=0.9999

2002.10.23

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank							0.008
0	0.017	0.018	0.018	0.009	0.010	0.010	0.010
42.1	0.065	0.066	0.063	0.057	0.058	0.055	0.057
84.2	0.109	0.110	0.113	0.101	0.102	0.105	0.103
126.3	0.164	0.163	0.165	0.156	0.155	0.157	0.156

迴歸結果? y=1.15*10⁻³x+0.011? R²=0.9989

2002.11.06

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank	0.007	0.007	0.008				0.007
0	0.018	0.018	0.017	0.011	0.011	0.010	0.010
42.1	0.064	0.065	0.064	0.057	0.058	0.057	0.057
84.2	0.113	0.114	0.113	0.106	0.107	0.106	0.106
126.3	0.163	0.163	0.164	0.156	0.156	0.157	0.156

迴歸結果? y=1.15*10⁻³x+0.010? R²=0.9998

200	12.1	1	.20
200			.20

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank	0.006	0.007	0.007				0.007
0	0.019	0.020	0.019	0.012	0.013	0.012	0.013
42.1	0.067	0.066	0.067	0.060	0.059	0.060	0.060
84.2	0.115	0.116	0.115	0.108	0.109	0.108	0.109
126.3	0.164	0.163	0.164	0.157	0.156	0.157	0.157

迴歸結果? y=1.14*10⁻³x+0.013? R²=1.0000

2002.12.09

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank	0.008	0.007	0.008				0.008
0	0.017	0.017	0.018	0.009	0.009	0.010	0.010
42.1	0.065	0.063	0.064	0.057	0.055	0.056	0.056
84.2	0.114	0.115	0.114	0.106	0.107	0.106	0.107
126.3	0.161	0.163	0.162	0.153	0.155	0.154	0.154

迴歸結果? y=1.15*10⁻³x+0.010? R²=0.9998

2002.12.21

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank	0.008	0.007	0.007				0.007
0	0.018	0.017	0.018	0.011	0.010	0.011	0.010
42.1	0.063	0.066	0.065	0.056	0.059	0.058	0.057
84.2	0.114	0.115	0.113	0.107	0.108	0.106	0.107
126.3	0.163	0.162	0.163	0.156	0.155	0.156	0.155

迴歸結果? y=1.15*10⁻³x+0.010? R²=0.9999

20	03.	.01	.23

添加之磷酸鹽	原始吸光值			修正後之吸光值			
濃度(nM)	Abs1	Abs2	Abs3	Abs1	Abs2	Abs3	Avg
blank	0.008	0.007	0.007				0.007
0	0.020	0.019	0.020	0.013	0.012	0.013	0.012
42.1	0.068	0.069	0.068	0.061	0.062	0.061	0.061
84.2	0.113	0.112	0.115	0.106	0.105	0.108	0.106
126.3	0.163	0.164	0.163	0.156	0.157	0.156	0.156

迴歸結果? y=1.13*10⁻³x+0.012? R²=0.9996

附錄三 海水中葉綠素 a (Chlorophyll-a) 及非 活體葉綠素 (phaeopigments) 之測定

原理:

Yentsch and Menzel (1963)最早提出以螢光光度計分析葉綠素 a,係因葉 綠素 a 在藍光的激發下會放出紅色螢光的特質。經由丙酮液萃取所得之樣品葉綠 素 a 會吸收波長 443nm 之光線並定量地放射出螢光,此螢光在波長 665-670nm 處會產一高峰放射值。以波長 669nm 之螢光儀讀值對比由葉綠素 a 所求得之檢量 線即可及得樣品葉綠素 a 的濃度值其單位為µg/l。而葉綠素 a 會在浮游植物死 後、強酸、強鹼、強光或是高溫下會降解成為非活體葉綠素 (Phaeopigment),非 活體葉綠素透過藍光的激發也會放出紅色螢光。所以用螢光光度計測定存於水體 浮游植物葉 綠素 甲含量時,需扣除水體中非活體葉 綠素 的含量。隨後 HoIm-Hanson 等人(1965)修正 Yentsch and Menzel 的經驗式,並經 Strickland and Parsons (1968)整理後,該經驗式目前被廣泛應用在自然水體中葉綠素甲的 分析上。

試劑的配置:

- (1) 90% 丙酮(Acetone):取 100 mL 去離子水(de-ionized water)與 900 mL 丙酮(J.T.Baker, HPLC Grade, #9002-03)混合均匀。
- (2)0.1N 鹽酸(HCI):取約1 mL 鹽酸(Merck Company, GR Grade),用去離子 水定容至100 mL。

操作步驟及計算:

將採集所得的水樣以乾淨的 polyethylene 暗瓶收集以防止光害,為了防止 葉綠素甲在酸性下狀況的分解,宜滴入 3-5 滴的飽和碳酸鎂溶液於採樣瓶中。過 濾時宜在暗光下進行,使用 0.45µm 的玻璃纖維濾紙,抽氣的壓力不宜超過 150mmHg 以防止細胞在抽氣過程中破裂。過濾體積視水樣而定。河口及海岸水樣 過濾體積 50~100mL;大洋水則以 500~1000mL 或更大體積為宜。過濾後以鑷子取 下並折疊(含浮游植物面朝內),用錫箔紙封好,記錄採樣地點日期及樣品編號。

由於葉綠素 a 會在高溫下自行分解,因此濾紙樣品必須在冷凍狀況下保存, 如以液態氮冷凍,樣品可保存三個月;如儲存於-20 的冷凍箱內,樣品最好在

111

2~3 週內進行分析。

開始分析樣品之前,先開啟實驗分析儀器進行暖機動作,預熱三十分鐘以上;
 並在其後以 90 % 的丙酮液校正零點。

2.濾紙樣品解凍後放入玻璃研磨管內並加入 5mL 90%丙酮液。利用超音波震盪
 棒研磨 3~5 分鐘,研磨時必須上下移動研磨管以確保均勻研磨。

研磨完畢後倒入離心管內,再以少許丙酮清洗研磨管上之殘餘物至離心管中。
 最後加90%的丙酮使最後的容積為10mL。離心管至於暗冷處(如冰箱冷藏庫中)
 20分鐘以上,進行粹取。

4. 將離心管放入離心機中,以 3000-4000 rpm 轉速離心 10 分鐘。

5. 取離心過後的上層清液,倒入 1cm 的石英光電管內至八分滿,置入螢光儀內測 量吸收值(Rb值)。

6. 加入 3 滴 1.2N 鹽酸並記錄此酸化後的吸收值 (Ra)。

7.若是超過偵測極大值,必須以丙酮加以稀釋。

樣品濃度的計算:

樣品內葉綠素甲及非活體葉綠素 (phaeopigments; phaeo.) 之濃度計算式 如下,濃度單位均為μg/L或mg/m³。

 $Chl.A = [T/(T-1)] \times (Rb-Ra) \times Fd \times (Ve/Vf)$

Phaeo = $[T/(T-1)] \times (T \cdot Rb - Ra) \cdot Fd \times (Ve/Vf)$

T: chl.A 酸化係數(Rb/Ra)通常為2.2

- Rb:酸化前螢光值 Ra:酸化後螢光值
- Fd:螢光儀之校正門閥值(door factor),或其他種類儀器之類比訊號值
- Ve:粹取溶液體積(mL)=10mL Vf:過濾樣品體積(L)

參考文獻:

Bidigare, R. R., Frank, T. J., Zastrow, C., and Brooks, J. M., (1986). The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res. 33(7), 923-937.

Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., Strickland, J. D. H., (1965). Fluorometric determination of chlorophyll. J. Conseil. 301, 3-15. Humphrey, G. F., (1966). The concentrations of chlorophylla and c in the south-eastern Indian Ocean. Aust. J. Mar. Freshw. Res. 17, 135-145.

- Lorenzen, C. J., (1981). Chlorophyll b in the ocean. Deep-Sea Res. 28, 1049-1056.
- Parsons, T. R., Strickland, J. D. H., (1963). Disscussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. Mar. Res. 21, 155-163.
- Strickland, J. D. H. and Parsons, T. R., (1968). A practical handbook for seawater analysis. Fish. Res. Bd., Canada, 201, 1st ed., 311pp.
- Welschmeyer, N. A., (1994). Fluorometric analysis of chlorophylla in the presence of chlorophyllb and phaeopigments. Limnol. Oceanogr. 39(8), 1985-1992.
- Yentsch, C. S., Menzel, D. W., (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res. 10, 221-231.

附錄四 磷酸鹽測定之試劑配製

試劑的配製與第二章相似, 配製濃度略有不同, 見附錄四以下化 學試劑均以 D³W 來配製, 即自來水先經過離子交換樹脂後再經 2 次 蒸餾而得。所有的試劑全在實驗前才配製, 不要久存。

(a) 鉬酸銨溶液:取10g (NH4) MorO24 4H20 加 D³W 至 250mL。

- (b)稀釋硫酸:在一燒杯中先注入約 200mL D³W,再將 115mL 的 濃硫酸緩緩注入,並搖動攪拌,以免溫度過高,最後以 D³W 稀 釋到 750mL 冷卻備用。
- (c)酒石酸銻鉀溶液:秤 0.25g K(Sb0)C4H4O6 0.5H2O 溶於 100mL D³W 中。
- (d)酸性鉬酸銨試劑(簡稱 HSbMo):將上述三試劑混合,但次序 很重要,用一個大容器,將(a)緩緩倒入(b)再倒入(c),最 後混合的體積為 1100mL。HsbMo 試劑配成後,儲存於玻璃瓶中, 可穩定一年以上。
- (e) 抗壞血酸溶液(簡稱 ASC): 秤 3g C6H8O6溶於 100mL D³W 中。 此溶液應為無色,但隨時間會氧化,如變黃褐色則丟棄。
- (f)磷酸鹽標準溶液:秤 0.68g磷酸二氫鉀(Potassium dihydrogen orthophosphate)溶於 1000mL D³W中。此溶液濃度約為 5000 μM,再依需要稀釋。

114

(g)磷酸鹽工作溶液:將磷酸鹽標準溶液取 2mL稀釋到 100mL,濃 度為 100μM,再取 1、2、5 mL稀釋到 100mL 作為工作溶液。

附錄五 σ_θ迴歸範圍內 , 對應參數之求取 [作法]:

- 1.假設在迴歸範圍內, 欲求取的參數值為溫度, 則將欲求取之 CTD 水 文資料以每一個梯次一個純文字檔, 獨立分開, 每一個檔案裡有兩 列數列分別是:溫度和σ₆。
- 由於每個航(梯)次σθ的範圍不同,所以將σθ設定在 20.000 到
 28.000 之間,以涵蓋所有的範圍。以每 0.005σθ為間隔,並找出對
 應的溫度值,若無設定的σθ值,就使用線性內差的方法計算。

[程式]:程式是利用 Fortran 軟體所寫,如下:

```
real t1(10000),d1(10000),a(1601),msdata,t
integer ncount
character*12 fin,fout
```

с

```
open(50,file="a.txt",status='old')
open(1,file="fin.dat",status='old')
open(2,file="fout.dat",status='old')
```

с

msdata=9999

с

```
do i=1,1601
read(50,*) a(i)
enddo
```

с

do k=1,46 ncount=0

```
read(1,*) fin
     read(2,*) fout
с
     open(6,file=fin,status='old')
     open(51,file=fout)
с
     do kk=1,10000
     t1(kk)=0
     d1(kk)=0
     enddo
с
     do i=1,10000
     read(6,*,end=555) t1(i),d1(i)
     ncount=ncount+1
     enddo
555 continue
с
     do i=1,1601
     if (a(i).gt.d1(1)) then
     write(51,*) a(i),msdata
     elseif (a(i).lt.d1(ncount)) then
     write(51,*) a(i),msdata
     else
     do j=1,ncount
     if (a(i).le.d1(j).and.a(i).gt.d1(j+1)) then
     t=t1(j+1)-((t1(j+1)-t1(j))*(d1(j+1)-a(i))/(d1(j+1)-d1(j)))
     write(51,*) a(i),t
    goto 500
     endif
     enddo
     endif
500 enddo
     close(6)
     close(51)
     enddo
     stop
     end
```

附錄六 各測站表層磷酸鹽濃度表

RV	Cruise	Station	Cast	Depth(m)	PO4(uM)
OR1	639	KK1	3	10	0.023
OR1	639	KK1	3	80	0.624
OR1	639	KK1	3	200	1.248
OR1	639	KK1	5	20	0.022
OR1	639	KK1	5	40	0.045
OR1	639	KK1	5	100	0.717
OR1	639	KK1	5	125	0.871
OR1	639	KK1	7	5	0.053
OR1	639	KK1	7	10	0.023
OR1	639	KK1	7	20	0.032
OR1	639	KK1	7	40	0.041
OR1	639	KK1	7	60	0.159
OR1	639	KK1	7	80	0.636
OR1	639	KK1	7	100	0.848
OR1	639	KK1	7	150	1.007
OR1	639	KK1-1	3	5	0.025
OR1	639	KK1-1	3	10	0.025
OR1	639	KK1-1	3	20	0.025
OR1	639	KK1-1	3	50	0.068
OR1	639	KK1-1	3	75	0.541
OR1	639	KK1-1	3	100	0.734
OR1	639	KK1-1	3	200	1.349
OR1	639	KK1-1	6	5	0.047
OR1	639	KK1-1	6	10	0.017
OR1	639	KK1-1	6	20	0.021
OR1	639	KK1-1	6	40	0.046
OR1	639	KK1-1	6	60	0.205
OR1	639	KK1-1	6	80	0.370
OR1	639	KK1-1	6	100	0.642
OR1	639	KK1-1	6	150	0.908
OR1	639	KK1-1	6	200	1.210
OR1	639	KK1-1	7	5	0.035
OR1	639	KK1-1	7	10	0.030
OR1	639	KK1-1	7	20	0.035
OR1	639	KK1-1	7	50	0.073
OR1	639	KK1-1	7	75	0.621
OR1	639	KK1-1	7	100	0.779
OR1	639	KK1-1	7	200	1.375
OR1	639	KK1-1	11	5	0.039
OR1	639	KK1-1	11	10	0.030
OR1	639	KK1-1	11	20	0.035
OR1	639	KK1-1	11	50	0.063
OR1	639	KK1-1	11	75	0.626
OR1	639	KK1-1	11	100	0.779
OR1	639	KK1-1	11	200	1.264

RV	Cruise	Station	Cast	Depth(m)	PO4(µM)
OR3	794	KK1	2	10	0.277
OR3	794	KK1	2	80	0.090
OR3	794	KK1	2	200	1.353
OR3	794	KK1	3	20	0.584
OR3	794	KK1	3	100	0.714
OR3	794	KK1	4	40	0.028
OR3	794	KK1	4	125	0.898
OR3	794	KK1	5	2	0.006
OR3	794	KK1	5	60	0.089
OR3	794	KK1	5	150	1.244
OR3	794	KK1	7	10	0.007
OR3	794	KK1	7	20	0.000
OR3	794	KK1	7	40	0.007
OR3	794	KK1	7	60	0.029
OR3	794	KK1	7	80	0.369
OR3	794	KK1	7	100	0.662

RV	Cruise	Station	Cast	Depth(m)	PO4(uM)
OR1	656	KK1	6	5	0.007
OR1	656	KK1	6	10	0.014
OR1	656	KK1	6	20	0.009
OR1	656	KK1	6	40	0.010
OR1	656	KK1	6	60	0.073
OR1	656	KK1	6	80	0.361
OR1	656	KK1	6	100	0.670
OR1	656	KK1	6	125	0.721
OR1	656	KK1	6	150	0.876
OR1	656	KK1	6	200	1.082

RV	Cruise	Station	Cast	Depth(m)	PO4(µM)
OR1	676	STD	4	5	0.053
OR1	676	STD	4	10	0.037
OR1	676	STD	4	20	0.039
OR1	676	STD	4	40	0.051
OR1	676	STD	4	60	0.063
OR1	676	STD	4	80	0.140
OR1	676	STD	4	100	0.252
OR1	676	STD	4	150	0.440
OR1	676	STD	4	250	0.875
OR1	676	STD	4	250	0.812
OR1	676	STD	7	5	0.039
OR1	676	STD	7	10	0.047
OR1	676	STD	7	20	0.063
OR1	676	STD	7	40	0.236
OR1	676	STD	7	60	0.420
OR1	676	STD	7	80	0.560
OR1	676	STD	7	100	0.616
OR1	676	STD	7	150	0.847
OR1	676	STD	7	200	1.188
OR1	676	STD	7	250	1.584
OR1	676	STD	9	5	0.035
OR1	676	STD	9	10	0.041
OR1	676	STD	9	20	0.053
OR1	676	STD	9	40	0.050
OR1	676	STD	9	60	0.050
OR1	676	STD	9	80	0.092
OR1	676	STD	9	100	0.159
OR1	676	STD	9	150	0.236
OR1	676	STD	9	200	0.746
OR1	676	STD	9	250	0.816
OR1	676	STD	12	5	0.034
OR1	676	STD	12	10	0.121
OR1	676	STD	12	20	0.022
OR1	676	STD	12	40	0.023
OR1	676	STD	12	60	0.060
OR1	676	STD	12	80	0.075
OR1	676	STD	12	100	0.281
OR1	676	STD	12	150	0.424
OR1	676	STD	12	200	0.937
OR1	676	STD	12	250	1.195

附錄七 南海其他測站

本附錄主要說明磷酸鹽在南海北部空間上的變化,利用 2002 年 3月19日到4月2日海研一號 639 航次,其採樣測站位置如圖 A6-1、 表 A6-1 所示,行經的路線為自台灣高雄港向西穿越台灣海峽,沿途 經 X1、X2 測站到大陸沿岸珠江口測站(PR);自 PR 測站沿大陸邊緣測 站(LEMA、PING)到大洋測站(KK1);自 KK1 測站回台灣沿途經 DS 測 站。

6.1 採水與探測方法

採樣是利用 CTD Rosette 系統搭配 Go-FIo 採水瓶,採樣的深度 隨著沿岸到大洋而深度愈深,樣水是以 Nalgene 的 PE 瓶存放,在裝 填樣水前,為了避免受到污染至少要以樣水潤洗三次,採樣水時,裝 填約三分之二滿以直立形式放入液態氮筒中急凍,以免急凍時體積膨 脹,造成海水樣品的外漏。急凍後儲存於冷凍庫中(-20)。

分析樣品前,需將樣水解凍回到室溫。本研究是在分析的前一 天,先將放置於冷凍櫃的樣品移至(4)的冷藏櫃,經過約12小時 解凍,分析當天再靜置於實驗桌上,使之回到室溫才進行測定。

在磷酸鹽的分析方面,100m 以淺用 MAGIC (MAGnesium-Induced Coprecipitation) (Karl and Tien,1992)方法分析(見第二章);在 100m 以深係直接採用抗壞血酸鉬磷還原比色法 (Murphy and

121

Riley, 1962), 由海科中心海化組分析。

6.2 結果與討論

由於大部分的測站位於陸棚區,深度極淺,故本研究著重於討論上層(0-150m)的化學水文,KK1 測站的溫鹽則以代表性溫鹽垂直剖面(詳見第四章)代表之。

'由溫度垂直剖面圖(圖 A6-2b)顯示 , 所有的測站表層水的溫度都 較 KK1 測站溫度來的低 , 這是因為陸棚的水冷卻所造成 ; 但是在表層 以下X1 PING測站的溫度較KK1測站高 由鹽度垂直剖面圖(圖A6-3b) 顯示 , 在表層所有測站的鹽度都較 KK1 測站高 , 這是因為陸棚水受冷 卻作用及垂直混合所造成。但 PING、X1、DS 測站在 60-120m 其鹽度 較 KK1 測站低 , X1 測站鹽度極大值較其他測站高 , 出現的深度較深。 由溫鹽圖(圖 A6-4b)顯示,大部分的測站的水團性質與 KK1 測站相 似,但其中比較特殊的測站是 X1、DS 測站, X1 測站位於最東邊, 其水團特性較偏向西菲律賓海,推測可能是受到黑潮入侵的影響。 PING 測站與 KK1 測站的水團特性頗為相近,顯然其高溫並非受到黑 潮入侵的影響。DS 測站位於太平島附近,在此有強烈的混合作用, 造成中層水與表層水的混合(圖 A6-4b),推測可能為內波震盪造成此 強烈的垂直混合作用。

由磷酸鹽垂直剖面圖(圖 A6-5a)顯示, DS 測站的磷酸鹽濃度同一

122

深度都較 KK1 測站高,與前面推論符合,主要是受到內波震盪作用, 造成垂直混合使高濃度的磷酸鹽向上擴散。在 100m 以下,X1 測站受 黑潮入侵的影響,其磷酸鹽濃度較 KK1 站為低,營養鹽躍層也較深。 由磷酸鹽與溫度關係圖(圖 A6-5b)顯示,X1 測站的水團顯然與 KK1 測 站不同,其磷酸鹽濃度與溫度的關係也與 KK1 測站不同。DS 測站則 是受到強烈混合作用影響,故與 KK1 測站不同。其他測站磷酸鹽濃度 與溫度的趨勢都與 KK1 測站類似。由對數尺度磷酸鹽濃度與溫度關係 圖(圖 A6-5c)顯示,在表層 DS 測站的磷酸鹽濃度特別高,顯示其垂 直混合影響到表層。X1 測站則是不同的水團。PR 測站磷酸鹽濃度特 別低,主要是因該測站深度較淺,因冷卻作用所造成。

圖 A6-1.南海採樣測站位置圖

圖 A6-2.OR1-639 航次 a.0-500m 溫度垂直剖面圖 b.上層(0-150m)溫度垂直剖面圖

圖 A6-3.OR1-639 航次 a.0-500m 鹽度垂直剖面圖 b.上層(0-150m)鹽度垂直剖面圖

圖 A6-4.OR1-639 航次 a.0-500m 溫鹽圖 b.上層(0-150m)溫鹽圖

圖 A6-5.a.磷酸鹽垂直剖面圖 b.磷酸鹽對溫度關係圖 c.上層對數尺度磷酸鹽對溫度關係圖

RV	Cruise	Station	Lon.	Lat.	Date	Time(start)	Time(end)	工作項目
OR1	639	X1	118.01	22.00	2002/3/20	02:12	03:21	CTD & Sampling
OR1	639	X2	115-59	22.00	2002/3/20	15:50	16:17	CTD & Sampling
OR1	639	PR	113.50	21.48	2002/3/21	05:26	05:50	CTD & Sampling
OR1	639	LEMA	113.54	20.33	2002/3/21	18:39	18:52	CTD & Sampling
OR1	639	PING	114.08	20.16	2002/3/21	21:39	01:12	CTD & Sampling
OR1	639	ADCP	115.30	18.15	2002/3/23	12:00	14:40	CTD & Sampling
OR1	639	ATLAS	115.15	18.15	2002/3/24	08:00	12:10	CTD & Sampling
OR1	639	KK1	115.35	18.15	-	-	-	CTD & Sampling
OR1	639	DS	116.41	20.42	2002/3/30	10:42	11:05	CTD & Sampling

表 A6-1.OR1-639 航次化學水文探測工作表